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ABSTRACT

Automatic Speech Recognition (ASR) systems often face
challenges in alignment quality, particularly with the Con-
nectionist Temporal Classification (CTC) approach, which
frequently results in a high number of blank frames, known
as the “peaky” issue. In this study, we explore the impact of
modifying ASR model topologies on alignment quality with-
out compromising Word Error Rate (WER) performance. Our
findings demonstrate that introducing additional states to the
CTC topology significantly improves alignment quality and
mitigates the peaky issue. Conversely, increasing the min-
imum traversal frame can degrade alignment quality in our
specific settings. These insights emphasise the critical im-
portance of topology design in balancing alignment accuracy
and recognition performance in ASR systems.

Index Terms— ASR, CTC, Topology, Alignment

1. INTRODUCTION

Since its inception in 2006, Connectionist Temporal Classi-
fication (CTC) has emerged as a cornerstone in the field of
End-to-End (E2E) Automatic Speech Recognition (ASR), en-
abling the training of Neural Network (NN) based ASR mod-
els directly from transcribed speech datasets without explicit
alignment information [1–5]. This innovative approach mod-
els the posterior probability by marginalising over all possi-
ble alignments that correspond to a target sequence, leverag-
ing a remarkably simple yet effective one-state topology for
each modelling unit (e.g., grapheme, phoneme, or Byte Pair
Encoding (BPE)). This simplicity has facilitated widespread
adoption in various ASR applications. The foundational one-
state topology, along with a shared blank state, was implicit in
the original formulation of CTC, despite not being explicitly
mentioned [3, 6].

However, despite its significant contributions, CTC is not
without its limitations. One notable issue is the “peaky” prob-
lem, which means, due to its unique topology, CTC tends to
classify most frames as blank labels, leading to sparse and
potentially less informative predictions [7]. To address this,
in [3], the authors proposed a new loss function by introduc-
ing an individual blank label for each modelling unit, aiming
at changing the topology and the training behaviour. Further-

more, the nature of CTC’s conditional independence assump-
tion leads it to assign too much probability mass to alignments
that are less probable at a sequence-level, resulting in a high
entropy in the probability distribution of alignments. This
characteristic is suboptimal for tasks requiring precise align-
ment, such as Viterbi decoding, prompting the exploration of
entropy regularization as a potential solution [6].

Whilst for most applications, Word Error Rate (WER) is
the most important measure of ASR performance, in many
cases the quality of word alignments is also significant [8]. In
view of the issues outlined above, this paper investigates the
potential of enhancing alignment quality in CTC-like ASR
models through modifications to the model topology. Inspired
in part by [3,9], we investigate seven more topologies to see if
the change of topology can make a difference to overall WER
performance and word level alignment quality.

To facilitate a comprehensive and fair comparison be-
tween topologies, we employ a Differentiable Weighted
Finite-State Transducer (DWFST) framework as the foun-
dational architecture for implementing all models involved
in our experiments [10]. This choice allows us to seamlessly
integrate the CTC loss function as a specific instance within
a broader experimental framework, thereby ensuring that our
comparative analysis is both robust and insightful.

2. METHOD

2.1. CTC

Given an input speech X , represented either as a sequence
of feature vectors or as a raw waveform, we first process it
through an acoustic encoder. This encoder transforms X into
a sequence of hidden features or high-level representations.
Subsequently, one or more linear layers, culminating in a soft-
max activation function, are applied. This process yields a
probability distribution over each token c in the set of out-
put tokens C (which includes the blank label) at each time
step t, denoted as pt(c|X), where t = 1, 2, . . . , T . With the
conditional independence assumption, CTC models the pos-
terior probability p(Y |X) by marginalising all possible align-
ments between X and the target tokenised sequence Y (e.g.,



graphemes, phonemes, BPEs),

p(Y |X) =
∑

π∈B−1(Y )

T∏
t=1

pt(πt|X). (1)

where B(π) is the operation of compressing repeated neigh-
bouring tokens and then removing blank labels from an align-
ment sequence π.

2.2. DWFST Implementation

We can easily implement CTC with DWFST [9,10], and more
generally the posterior p(Y |X) is modelled as

p(Y |X) =

∑
π∈Π(Y ;T ◦L) p(π|X)∑

Y ′
∑

π∈Π(Y ′;T ◦L) p(π|X)
, (2)

where T and L denote the Topology and the Lexicon Finite-
State Transducer (FST), and Π(Y ;T ◦L) represents the set of
all the token sequences (“paths”), whose corresponding out-
put word sequence is Y , in the composition resulting FST,
T ◦ L [11]. We also apply the conditional independence as-
sumption and thus

p(π|X) =

T∏
t=1

pt(πt|X). (3)

We compute the numerator in eq. (2) as∑
π∈Π(Y ;T ◦L)

p(π|X) = TotalScore(E ◦ Strn), (4)

where TotalScore denotes the total score operation, and E is
the Emission FST constructed from the model’s outputs. Strn

is the training graph derived from the target word sequence Y ,

Strn = T ◦ (L ◦ Y ), (5)

where Y is a linear FST with the sequence Y as input and
output labels.

The previous work [3] has underscored the importance of
normalisation (the denominator term in eq. (2)) for achieving
training convergence. Due to the limitation of computation
resources, we approximate the denominator by taking into ac-
count the paths that are acceptable for T , so we have∑

Y ′

∑
π∈Π(Y ′;T ◦L)

p(π|X) ≈ TotalScore(E ◦ T ). (6)

Note that when T is set as the CTC topology, as we will see
in Figure 1a, any arbitrary token sequence can be accepted ,
so the denominator is always one, resulting in

p(Y |X) =
∑

π∈Π(Y ;TCTC◦L)

p(π|X), (7)

which is equivalent to the CTC loss function as eq. (1). How-
ever, generally, for most topologies, not all the paths in E can
be accepted by T , which leads to a denominator not equal to
one.

2.3. Topology

To investigate various topologies comprehensively , we in-
troduce seven additional topologies in this paper, as shown
in Figure 1. To systematically address these topologies, we
name them using the pattern Sx-Ty(⋆*n). Here, Sx-Ty indi-
cates there are x states for each modelling unit with a mini-
mum traversal frame of y, and an added ⋆ denotes an addi-
tional self-loop compared to the version without any ⋆. Thus,
in our naming system, the CTC topology is referred to as S1-
T1.

Although not explicitly mentioned in the foundational pa-
per [1], CTC inherently employs a one-state topology, as il-
lustrated in Figure 1a. We identify several limitations asso-
ciated with this topology. Firstly, modelling each unit with a
single state restricts CTC’s modelling capabilities. This limi-
tation arises because acoustical variations within a modelling
unit are challenging to represent accurately with a singular
state, leading to potential misclassifications. A direct conse-
quence of this limitation is the “peaky” issue [7], where CTC
predominantly assigns frames as blank labels, except in cases
of high classification confidence. While CTC is effective for
optimising overall Word Error Rate (WER) performance [2],
it falls short in ensuring high-quality alignment [6, 12]. This
aspect is crucial for applications requiring precise temporal
alignment between the audio input and the transcribed text.

Inspired by [3], we introduce S2-T1 (Figure 1b), where a
second state with a self-loop is assigned to each modelling
unit, but there is no self-loop on the first state. A natural
variant of S2-T1 is S2-T1⋆, where a self-loop is added to
the first state. Compared to the traditional CTC topology,
S2-T1⋆ and S2-T1 can be regarded as enhanced two-state
variants. By incorporating a second state, we expect S2-T1
and S2-T1⋆ to surpass the original CTC in terms of mod-
elling capabilities and achieve better alignment quality. Note
that both variants, S2-T1 and S2-T1⋆, maintain a minimum
traversal frame of one, similar to CTC, meaning at least one
frame must be absorbed to output one modelling unit.

To further investigate the influence of the minimum
traversal frame, we introduce five additional topologies where
at least two frames must be absorbed to output one modelling
unit: S2-T2, S2-T2⋆, S3-T2, S3-T2⋆, and S3-T2⋆⋆, as
shown in Figures 1d to 1h, respectively. By comparing the
S2-T2* and S3-T2* topologies, we can also examine whether
adding more states affects modelling ability and alignment
quality. Finally, similar to the CTC topology (S1-T1 in Fig-
ure 1a), a blank label is introduced and kept identical across
all the topologies investigated in this paper.

2.4. Decoding and Alignment

We construct the decoding graph as

Sdec = T ◦ (L ◦G), (8)



A <blk>

(a) S1-T1 (CTC)

<blk>A1A0

(b) S2-T1

<blk>A1A0

(c) S2-T1⋆

<blk>A1A0

(d) S2-T2

<blk>A1A0

(e) S2-T2⋆

<blk>A2A1A0

(f) S3-T2

<blk>A2A1A0

(g) S3-T2⋆

<blk>A2A1A0

(h) S3-T2⋆⋆

Fig. 1: The topologies investigated in this paper, where <blk> denotes the shared optional blank label. Note that in some
cases the blank label is unskippable in CTC but we omit it for simplicity. Sx-Ty means there are x states for each phone, the
minimum traversal frame is y, and one ⋆ means one more self-loop is added.

where G and L are Grammar and Lexicon FST, respectively,
and the former is normally obtained from an n-gram language
model [13]. For simplicity, operations such as determinisa-
tion and minimisation [11] have been omitted in the equation.
With outputs from models and a decoding graph, we apply
the Viterbi decoder [14, 15] to get the best word sequence

W ∗ = argmaxW [log p(W ) + α max
π∈Π(W ;Sdec)

log p(π|X)],

(9)
where p(W ) is determined by the language model, which is
encoded in Sdec as transition weights, and α is the acoustic
weight.

To obtain the alignment, we substitute G in eq. (8) with
W ∗ which is the linear FST constructed from the decoded
word sequence W ∗ or the ground thruth Y . We then de-
termine the optimal path using the Viterbi decoder, taking
into account the output posterior probabilities. For acquir-
ing word-level alignments, we identify the start timestamp for
each word as the timestamp of the transition where the word is
the output label. Similarly, the end timestamp for each word
is derived from the timestamp of the last transition that has a
non-blank input label.

3. EXPERIMENTS

3.1. Settings

In our study, we conduct experiments using the LibriSpeech
dataset by fine-tuning the wav2vec 2.0 model [16], which
was initially pre-trained on 60,000 hours of unlabelled speech
data1. Specifically, we fine-tune all 24 transformer layers of
the encoder, along with two linear layers that employ a log-
softmax activation function. The feature extractor component
of the wav2vec 2.0 model remains unchanged. Our models
use characters as the modeling units.

1WAV2VEC2 LARGE LV60K in torchaudio.pipelines

For the optimisation process, we employ two different op-
timisers: the Adam optimiser, with a learning rate of 10−4, for
the encoder layers, and the Adadelta optimiser, with a learn-
ing rate of 0.9, for the linear layers. The training process is
halted when no further reduction in loss is observed for two
consecutive epochs on the development set, dev-clean.

Throughout our experimental setup, we utilise Kaldi [17]
for data preparation and PyTorch [18] for neural network
training, with k22 serving as the backend for the DWFST
framework. For decoding and alignment generation, we em-
ploy the Viterbi decoder (“decode-faster” in Kaldi) and k2,
respectively.

To promote the reproducibility of our findings, we have
made the code for our experiments publicly available3. Fur-
thermore, we use the alignment results4 obtained from the
Montreal Forced Aligner [19] as a benchmark to evaluate the
alignment quality of the various topologies under investiga-
tion.

3.2. Evaluation Metrics

Primarily, we use the Word Error Rate (WER) metric to evalu-
ate the performance of ASR models featuring various topolo-
gies.

To assess alignment quality, we apply two different met-
rics depending on the circumstances discussed in this paper.
First, to measure the alignment quality given the ground truth
Y , we use the Time Stamp Error (TSE) [20], which is defined
as

TSE =

∑
w |rs − hs|+ |re − he|

Nw
, (10)

where
∑

w is conducted over all the words in the evaluation
set, and rs and re denote the reference starting and ending

2https://github.com/k2-fsa/k2
3https://github.com/ZhaoZeyu1995/BenNevis
4https://github.com/CorentinJ/librispeech-alignments



timestamps, respectively, and the same for the hypothesis hs

and he.
In real applications, the ground truth is typically unavail-

able, making it more valuable to evaluate the quality of align-
ments based on the hypotheses recognised by the model it-
self. To this end, we employ Alignment Accuracy (ACC) [6],
which is defined as

ACC(τ) =

∑
w 1(rs − τ ≤ hs ∩ he ≤ re + τ)

Nw
, (11)

where Nw represents the total number of words in the evalua-
tion dataset. The function 1(∗) yields one if the specified con-
dition is true, and zero otherwise. The summation

∑
w is per-

formed over words that are correctly recognised by the ASR
models. It is important to note that the parameter τ serves
as a measure of tolerance for time discrepancies in alignment
accuracy assessments.

Upon obtaining the alignment represented as a linear FST,
we have precise knowledge of its input label sequence. To
verify whether the “peaky” issue can be mitigated by modify-
ing the topology, we calculate the Blank Ratio Rb as

Rb =

∑
u Nb∑
u N

, (12)

where Nb denotes the number of occurrences of the blank
state within an evaluation utterance, and N represents the to-
tal number of frames in that utterance. The summation

∑
u

is executed across all evaluation utterances. This evaluation
metric allows us to quantify the proportion of frames that are
classified as blank states by our models.

3.3. Results and Analysis

3.3.1. WER

Table 1: The WER(%) performance of different topologies,
with or without the official 3-gram language model (tgmsall)

test-clean test-other

noLM tgsmall noLM tgsmall

S1-T1 2.5 2.5 6.0 5.9
S2-T1 2.7 2.6 6.4 5.8
S2-T1⋆ 2.8 2.6 6.4 5.7
S2-T2⋆ 2.6 2.6 6.2 5.7
S2-T2 2.5 2.5 5.9 5.6
S3-T2 2.5 2.5 5.9 5.7
S3-T2⋆ 2.6 2.5 5.9 5.4
S3-T2⋆⋆ 2.5 2.5 6.0 5.8

Table 1 displays the overall Word Error Rate (WER) per-
formance of the models across various topologies. The WER
performance across the models under consideration is notably

similar, with the S3-T2⋆ model achieving marginally better
results than the others when using the official 3-gram lan-
guage model ‘tgsmall’. This trivial WER performance dif-
ference among different topologies can be attributed to the
wav2vec 2.0 model’s pre-training on an extensive corpus of
unlabelled speech data. Previous research has shown that, in
the absence of such pre-training, the performance disparities
between different topologies are more pronounced [9].

It is encouraging to observe that the other seven topolo-
gies, compared to S1-T1 (CTC), do not significantly com-
promise WER performance. This outcome is crucial, as a
substantial degradation in WER would render these topolo-
gies less appealing compared to the standard CTC approach.
Maintaining competitive WER performance is essential, as
we aim to enhance alignment quality without sacrificing ac-
curacy in speech recognition.

Overall, the findings suggest that our proposed topologies
can maintain robust WER performance while potentially of-
fering improvements in alignment quality. This balance is
vital for advancing ASR systems that require both high accu-
racy and precise temporal alignment.

3.3.2. Time Stamp Error

Our results indicate that different topologies, when paired
with the pre-trained wav2vec 2.0 model, exhibit nearly iden-
tical WER performance on both the test-clean and test-other
datasets. This consistency underscores the robustness of the
wav2vec 2.0 model, which maintains high accuracy across
various topology configurations due to its extensive pre-
training on unlabelled speech data.

Having established stable WER performance across
topologies, we next compare their alignment quality. To this
end, we align the model outputs with respect to the ground
truth and compute the Time Stamp Error (TSE), as shown in
Table 2. The TSE metric provides a quantitative measure of
how accurately the predicted timestamps match the reference
timestamps, allowing us to evaluate which topologies offer
superior alignment accuracy. This comparison is crucial for
identifying configurations that balance both high WER per-
formance and precise alignment, essential for applications
requiring accurate temporal synchronization.

Surprisingly, even though the WER performance of the
models with different topologies is quite similar, there are
clear differences in their alignment quality. Based on the TSE
performance, we can classify the topologies into three distinct
groups.

The first group includes only S1-T1 (CTC), which serves
as the baseline of our experiments. The second group con-
sists of S2-T1 and S2-T1⋆, which show better TSE perfor-
mance than the baseline. This improvement suggests that
adding an additional state to the original CTC topology en-
hances the modelling power. Comparing S2-T1 and S2-T1⋆,
where the only difference is the self-loop on the first state,



Table 2: The Time Stamp Error (in msec) of different topolo-
gies on test-clean and test-other.

test-clean test-other

S1-T1 (CTC) 97 98
S2-T1 79 81
S2-T1⋆ 78 80
S2-T2⋆ 131 135
S2-T2 131 134
S3-T2 131 137
S3-T2⋆ 130 134
S3-T2⋆ 132 137

reveals that the self-loop provides a minor improvement in
alignment quality.

The third group contains the remaining five topologies:
S2-T2, S2-T2⋆, S3-T2, S3-T2⋆, and S3-T2⋆⋆. These
topologies exhibit similar TSE performance, all worse than
the baseline CTC. Interestingly, despite S3-T2⋆ achieving
the best WER with the language model (as shown in Table 1),
it delivers low-quality alignments (as shown in Table 2). This
indicates that a model with good WER performance does not
necessarily guarantee high-quality alignments.

One possible explanation for the poor alignment quality
of the Sx-T2* topologies lies in the average ratio between the
number of output frames and the number of modelling units
per utterance. This ratio is around 3.6 for both the test-clean
and test-other datasets, meaning that, on average, there are
only about 3.6 frames to be absorbed for outputting one mod-
elling unit (characters in our settings). The Sx-T2* topolo-
gies may find it less flexible to learn proper alignments be-
tween output frame sequences and the target character se-
quences compared to the Sx-T1* topologies, thus hampering
their alignment quality.

3.3.3. Alignment Accuracy

In real-world applications, ground truth data is typically un-
available, so we also assess alignment quality based on the hy-
potheses generated by our models. For this condition, we use
the Alignment Accuracy (ACC) metric outlined in eq. (11).
The results are presented in Tables 3 and 4.

We align the model outputs to the hypotheses obtained us-
ing the ‘tgsmall’ language model. This evaluation helps us de-
termine which topologies maintain competitive WER perfor-
mance while also producing high-quality alignments based on
their own predictions, crucial for practical applications where
accuracy and alignment precision are essential.

Similar to the discussion in section 3.3.2, we can group
all eight topologies into three categories based on their align-
ment accuracy performance. The alignment accuracy results
exhibit a trend similar to that observed in Table 2. Specifi-
cally, when comparing alignment accuracy with different tol-

Table 3: The alignment accuracy ACC(τ) (%) of various
topologies with different τ values (msec) on test-clean

τ

10 20 30 40 50

S1-T1 (CTC) 78 86 91 95 96
S2-T1 88 94 96 97 97
S2-T1⋆ 89 95 97 98 98
S2-T2⋆ 62 68 74 79 83
S2-T2 64 71 76 81 85
S3-T2 61 68 73 78 82
S3-T2⋆ 65 71 77 82 86
S3-T2⋆⋆ 63 69 75 80 84

Table 4: The alignment accuracy ACC(τ) (%) of different
topologies with different τ values (msec) on test-other

τ

10 20 30 40 50

S1-T1 (CTC) 75 82 90 91 93
S2-T1 82 89 92 93 94
S2-T1⋆ 83 91 93 93 94
S2-T2⋆ 54 61 67 72 76
S2-T2 56 63 69 74 78
S3-T2 53 59 65 71 75
S3-T2⋆ 57 64 69 75 79
S3-T2⋆⋆ 54 61 67 73 77

erances (denoted as τ ), the S2-T1⋆ and S2-T1 topologies
consistently outperform the CTC, especially with a low toler-
ance value.

For instance, with τ = 10, the S2-T1⋆ topology achieves
a 10.6% relative improvement in alignment accuracy over the
baseline S1-T1 (CTC). This improvement highlights the lim-
itations of the CTC topology, which employs a single state
with a self-loop for each modelling unit, significantly restrict-
ing its modelling capabilities as discussed in section 2.3.

Previous research [3] has demonstrated that incorporating
an additional state without a self-loop, as in the S2-T1 topol-
ogy, can enhance WER performance and convergence speed
in models that have not been pre-trained. However, our exper-
iments with pre-trained models reveal minimal differences in
WER performance among the different topologies. Despite
this, the S2-T1 topology still achieves the second-best align-
ment quality among the eight topologies.

The consistent performance of the S2-T1 and S2-T1⋆
topologies suggests that adding an extra state can improve
alignment accuracy, even in pre-trained models. This finding
is crucial for applications requiring precise temporal align-
ment, where the baseline CTC topology may fall short. Thus,
our results indicate that topologies with an additional state,



such as S2-T1 and S2-T1⋆, offer a better balance between
maintaining WER performance and enhancing alignment
quality.

On the other hand, the remaining five topologies (S2-T2,
S2-T2⋆, S3-T2, S3-T2⋆, and S3-T2⋆) show worse align-
ment accuracy performance than the baseline CTC. These
topologies, which all have a minimum traversal frame of two,
seem less effective in learning proper alignments between
output frame sequences and the target character sequences.
This could be due to the reduced flexibility in adapting to
the alignment constraints imposed by the longer minimum
traversal frame. Despite some of these topologies achiev-
ing competitive WER performance, such as S3-T2⋆, their
alignment quality remains subpar.

The consistent underperformance of the Sx-T2 topologies
in alignment accuracy suggests that the increased traversal
frame introduces challenges that outweigh the benefits of ad-
ditional states. This is particularly evident in our settings,
where the average ratio of output frames to modelling units
per utterance is around 3.6. The reduced number of frames
available for each modelling unit likely hampers the ability of
these topologies to achieve high-quality alignments.

3.3.4. Blank Ratio

Table 5 presents the blank ratios observed in different topolo-
gies when evaluated on the test-clean and test-other datasets.
It is important to note that the 3-gram language model was not
applied when generating the alignments for calculating the
blank ratio. This approach allows us to more closely evaluate
the intrinsic behaviour of the topologies without the influence
of the language model.

Table 5: The Blank Ratio (%) of different topologies on test-
clean and test-other.

test-clean test-other

S1-T1 (CTC) 45.8 48.5
S2-T1 6.6 7.7
S2-T1⋆ 6.4 7.6
S2-T2⋆ 5.5 6.6
S2-T2 5.1 6.2
S3-T2 4.6 5.7
S3-T2⋆ 4.9 6.0
S3-T2⋆⋆ 5.0 6.0

This comparison highlights the persistent peaky issue as-
sociated with the CTC topology, where a significant majority
of frames are classified as blank labels in the best alignment
paths. This phenomenon underscores a fundamental chal-
lenge in CTC’s approach to speech recognition: its simplicity,
while advantageous in certain contexts, may lead to excessive
caution in frame classification.

In contrast, the S2-T1 and S2-T1⋆ topologies, which
introduce an additional state, demonstrate a tendency to la-
bel fewer frames as blanks. This adjustment suggests an
enhanced capability to discern non-blank elements within
speech, thereby addressing one of the key limitations of the
CTC topology.

An interesting observation arises when comparing the
blank ratios between the test-clean and test-other datasets
across all topologies. There is a noticeable increase in blank
ratios for the more challenging test-other dataset. This in-
crease likely reflects the models’ struggle with the complex-
ity and variability inherent in test-other, leading to a higher
degree of uncertainty in frame classification. The difficulty of
test-other is particularly pronounced for the CTC topology,
which relies on a single state for each modelling unit. In
scenarios where a frame’s classification is not immediately
clear, CTC’s default is to opt for a blank label. While this
choice reduces the risk of misclassification, it also limits the
model’s ability to capture detailed timing information.

Conversely, the S2-T1 and S2-T1⋆ topologies benefit
from their enriched structure, featuring an additional state but
maintaining the same minimum traversal frame of one. This
provides them with more options for assigning frames to non-
blank states. This capability not only mitigates the “peaky”
issue but also enhances the model’s reliability and accuracy
in speech alignment. By affording more flexibility in frame
classification, S2-T1 and S2-T1⋆ demonstrate a significant
advancement in addressing the limitations of traditional CTC,
offering a promising avenue for improving alignment quality
in speech recognition systems.

Additionally, we observe that the S3-T2* topologies,
which include three states, tend to have a lower blank ratio
compared to the S2-T2* topologies. Furthermore, topologies
with a larger minimum traversal frame tend to have a lower
blank ratio. This is reasonable, as they need to absorb more
frames and classify them as non-blank labels to align output
sequences to target sequences effectively. Overall, these find-
ings underscore the importance of topology design in speech
recognition systems, highlighting how certain modifications
can significantly enhance both alignment quality and model
robustness.

4. CONCLUSION

Our study reveals that altering the topology can significantly
enhance alignment quality without compromising WER per-
formance. By adding an additional state to the CTC topology,
as seen in the S2-T1 and S2-T1⋆ models, we improved align-
ment quality and reduced the peaky issue common in CTC.
However, modifying the minimum traversal frame resulted in
poorer alignment quality compared to CTC under our experi-
mental conditions. These findings highlight the critical role of
topology design in balancing alignment accuracy and recog-
nition performance in speech recognition systems.
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