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Abstract
End-to-end (E2E) Automatic Speech Recognition (ASR) has
gained popularity in recent years, with most research focusing
on designing novel neural network architectures, speech rep-
resentations, and loss functions. However, the importance of
topology in E2E ASR has been largely neglected. There are
many aspects of topology to consider; in this paper, we focus
on the relationship between topologies’ minimum traversal time
and output frame rate, the number of distinct states for each
output unit, and the flexibility of alignments admitted. We ex-
amine several different topologies on two datasets: WSJ and
Librispeech. Our experiments reveal that different frame rates
have varying optimal topologies and that the commonly used
Connectionist Temporal Classification (CTC) topology is not
always optimal. Our findings suggest that the choice of topol-
ogy is an important consideration in the design of E2E ASR
systems.
Index Terms: Automatic Speech Recognition, End-to-End
ASR, Differentiable WFST

1. Introduction
Automatic speech recognition (ASR) is the task of transcrib-
ing input speech into the corresponding word sequence as ac-
curately as possible. One of the main challenges in ASR is
dealing with the absence of alignment information, where there
is speech data and the corresponding sentence-level transcrip-
tion [1]. Conventional ASR methods, such as Hidden Markov
Model (HMM) and Baum-Welch algorithm, tackle the align-
ment issue by considering all possible alignments [1]. On the
other hand, end-to-end (E2E) ASR models, such as Connection-
ist Temporal Classification (CTC) [2], Recurrent Neural Net-
work Transducer (RNN-T) [3], and Lattice Free Maximum Mu-
tual Information (LF-MMI) [4, 5], model the posterior proba-
bility of the target transcription by summing the probabilities of
all possible alignments. The Attention-based Encoder-Decoder
(AED) framework also deals with alignments using an attention
mechanism [6, 7].

The above direction of E2E ASR research is to address
the absence of alignment information by computing the objec-
tive function and backpropagating the loss for training deep
neural network (DNN) models. Another direction is to de-
sign new DNN architectures to improve E2E ASR performance.
In recent years, many types of DNN architectures have been
proposed, such as Transformer [8] and Conformer [9], which
significantly improve performance. In addition to designing
new DNN architectures, researchers have also focused on self-
supervised or unsupervised learning to fully utilize unlabelled
data [10, 11, 12, 13]. These methods make full use of unla-
belled data to extract better speech representations [10, 11], or

to generate pseudo-labels [12, 13].
While research on E2E ASR has mainly focused on loss

functions, neural network architectures, and self-supervised
learning, there has been less emphasis on the (often implicit)
role of the model topology. In contrast, in conventional HMM-
based ASR, HMM topology was subject to detailed investi-
gations in the past [14, 15, 16, 17]. Topology, in this con-
text, refers to how the outputs of acoustic models (in our case,
DNNs) – or tokens – related to the output units, which can
be characters, phonemes, or Byte-Pair Encoding (BPE) units.
Whilst attention-based encoder-decoder (AED) models operate
in a purely continuous space, the widely CTC and RNN-T mod-
els do have an HMM-like topology, and it should be noted that
CTC plays a key role in regularising AED training alignments
in many systems. CTC models can be considered to have a
one-state-HMM topology with a single self-loop, and as such,
the importance of topology in such models is generally over-
looked [18]. However, recent works have demonstrated that
topology is a crucial aspect of ASR models [18, 19, 20]. [20]
explored the relationship between topology and alignments and
found that altering the topology can affect the alignment den-
sity and that certain alignments can dominate over others, lead-
ing to improved alignment quality. Similarly, in [19], the au-
thors compared the performance of different topologies within
the LF-MMI framework. Despite the importance of topology,
many aspects of its influence on modern ASR models remain
to be investigated in a precise and systematic way. One poten-
tial challenge that researchers faced when working with topol-
ogy in ASR is the implementation, particularly when combin-
ing with deep learning frameworks. However, the Differentiable
Weighted Finite State Transducer (DWFST) offers a flexible ap-
proach to integrating WFST formalism with end-to-end (E2E)
deep learning frameworks, enabling researchers to investigate
the impact of topology on ASR models [21]. In this paper,
we focus on the interaction between topology and output frame
rates in the DWFST E2E ASR framework. Specifically, we ex-
amine three main aspects: (1) the impact of output frame rate
on the optimal topology selection, particularly in respect of its
minimum traversal time (2) the effect of topology and output
frame rate on alignment flexibility, and (3) the influence of the
output frame rate and number of states in the topology on the
behaviour of the shared blank label.

2. Methods
2.1. Training

We begin by obtaining a sequence of hidden features, or high-
level representations, H = h1:T , from the input speech features
sequence, X = x1:T , using an acoustic encoder. The acoustic
encoder may optionally apply subsampling, resulting in a hid-
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den feature sequence of length smaller than that of the input
sequence. For simplicity, we use T to denote both sequence
lengths of X and H . Next, we apply a linear layer with softmax
activation to obtain a probability distribution over all tokens,
pt(c|X), where t = 1, 2, . . . , T and c ∈ A is a token from the
token set A. We assume conditional independence, like CTC,
so that the probability of a token sequence π = π1:T , πt ∈ A
can be written as

p(π|X) =
T∏

t=1

pt(πt|X), (1)

Then, the posterior probability, p(Y |X), for a given word se-
quence Y = y1:U is:

p(Y |X) =

∑
π:Y p(π|X)∑

Y ′
∑

π:Y ′ p(π|X)
, (2)

where the summation over Y ′ is performed over all possible
word sequences, and π : Y denotes all the paths corresponding
to the word sequence Y . We use the training graph STRN to
compute the numerator by

∑

π:Y

p(π|X) = TotalScore(Intersect(E,STRN)), (3)

where Intersect and TotalScore represent the intersection and
total score in log semiring, respectively, E is the Emission FST
transformed from the output of the neural network model, and
STRN is the training graph

STRN = T ◦ (L ◦W ), (4)

where T , L, and W are the Token, the Lexicon and the Tran-
scription FST, respectively [21]. To calculate the denominator,
we only consider the valid paths, and thus

∑

Y ′

∑

π:Y ′
p(π|X) = TotalScore(E ◦ T ), (5)

where E is the emission FST. Note that with most topologies
(except CTC topology), not all the paths in E are valid, which
makes the summation of the probabilities of all possible word
sequences not equal to one. A previous work [22] has shown
that the normalisation (the denominator term in eq. (2)) is cru-
cial for the sequence-level loss function. Finally, our objective
function is defined as:

L = − log p(Y |X) (6)

2.2. Decoding

The decoding graph is constructed as follows:

SDEC = T ◦ (L ◦G), (7)

where G is a grammar FST, often obtained from an n-gram lan-
guage model [23]. In this equation, we have ignored many op-
erations, such as determinization and minimization, for simplic-
ity [24]. Given the output of the DNN model and the decoding
graph, we apply a Viterbi decoder to find the best path [25]. The
decoding result, W ∗, is

W ∗ = argmaxW (log p(W ) + αmax
π:W

log p(π|X)), (8)

where π : W denotes all the paths that correspond to the word
sequence, W , considering the decoding graph, SDEC.

3. Experiments and Analysis
3.1. Topologies

There are eight different topologies examined in this paper as
shown in table 1. The first topology, S1-T1, is the standard
CTC topology, which serves as a baseline for our experiments.
In CTC topology, there is one single token for each phone and
a shared blank label that is mandatory between repeated neigh-
bouring phones as a separator. Note that in [26], the authors
compared different CTC topologies, while in this work, we
compare different topologies most of which are not equivalent
to CTC. Inspired by previous work [22], we introduce an extra
state for each phone to increase the modelling power, resulting
in the S2-T1 topology in table 1, where there is no self-loop
for the first state in S2-T1, and the second state is optional and
skippable. S2-T1⋆ is similar to S2-T1, except for the self-loop
on the first state. Interestingly, we introduce S2-T1⋆ because
all the alignments acceptable by S2-T1 can be accepted by S2-
T1⋆. In this way, we can investigate how the number of possi-
ble alignments (or the size of the alignment space) affects model
performance.

All of the above three topologies can be traversed by one
output frame. To further investigate, we introduce five more
topologies that absorb at least two frames at the output end. S2-
T2⋆ is a direct generalization of S1-T2 by adding an extra state
with a self-loop. Similarly to S2-T1 and S2-T1⋆, S2-T2 is a
variant of S2-T2⋆ without self-loop. Keeping the same min-
imum traversal frame but adding one extra state to investigate
whether one more state can boost the modelling power, we have
S3-T2 and its variants, S3-T2⋆ and S3-T2⋆⋆.

In all the above topologies, we keep the shared optional
blank token to ensure a fair comparison with the original CTC
and to investigate how the topology and the output frame affect
its behaviour. In other words, the only difference between CTC
and the other topologies is how many tokens we use to model
a phone and what the topology (whether the self-loop or skip
transition is allowed or not) is.

3.2. Basic Settings

We apply Kaldi [27] and ESPnet [28] for data preparation, Py-
Torch [29] for DNN training and k21 as the DWFST backend.
To facilitate reproducibility and further research on topology,
we make our code open source2.

Our experiments are conducted on the WSJ and Librispeech
datasets. For both datasets, we extract 80-dimensional Fbank
features and 3-dimensional pitch features, perform speaker-
wise CMVN, and use the resulting features as inputs to our
neural network models. We further improve the performance
by applying SpecAugmentation [30] to the input features. As
for output tokens (phones in our framework), we select Byte
Pair Encoding (BPE) [31] for both datasets. Namely, we extract
100 and 5000 BPEs for WSJ and Librispeech, respectively. To
investigate how the topology interacts with the frame rate, for
each dataset, we apply two different subsampling factors in the
NN models by controlling the input convolution layers. Specif-
ically, for WSJ, the two subsampling factors of 2 and 4, but 4
and 6 for Librispeech. The reason why we choose these two
specific frame rates for WSJ and Librispeech can be briefly ex-
plained by table 2, where the average ratio of the NN output
and the target (BPEs) sequence is shown. We can see that to

1https://k2-fsa.github.io/k2/#
2We will provide the link upon acceptance due to double-blind re-

view regulations
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Table 1: Topologies comparison where ‘blk’ denotes the shared optional blank label. Note that sometimes the blank label is unskippable
for CTC but we ignore it in this table for simplicity. Sx-Ty means there are x states for each phone and the minimum traversal frame
is y and one ⋆ means there is one more self-loop added.

Topology Figure Description #States Minimum
Traversal

S1-T1 (CTC)
A <blk>

One state with self-loop 1 1

S2-T1 <blk>A1A0

No self-loop on the first state and skippable second
state 2 1

S2-T1⋆ <blk>A1A0 Skippable second state 2 1

S2-T2
<blk>A1A0

No self-loop on the first state not skippable 2 2

S2-T2⋆
<blk>A1A0

Two states with self-loop not skippable 2 2

S3-T2
<blk>A2A1A0

No self-loop on the first and the third state with a
skippable second state 3 2

S3-T2⋆
<blk>A2A1A0

No self-loop on the first state with a skippable second
state 3 2

S3-T2⋆⋆
<blk>A2A1A0

A skippable second state 3 2

Table 2: The average ratio of the output and the target length
with different subsampling factors.

2 4 6 8

WSJ 6.33 3.16 2.10 1.57
Librispeech 15.40 7.69 5.12 3.83

investigate the topology with a minimum traversal frame of 2,
for WSJ, we have to apply subsampling factors of 4 or 2. Even
though 6 might be still feasible for WSJ theoretically, the align-
ment space is too small limiting the ability of the model to learn
the alignment. For Librispeech, in our primary experiments,
we found that the performance with a subsampling factor of 8
is really bad. Considering this issue, and to keep a similar av-
erage ratio between the length of the output and the target se-
quences, we finally choose subsampling factors of 4 and 6 for
Librispeech. We suppose the reason why the performance with
a subsampling factor of 8 is significantly bad, is that the number
of BPEs for Librispeech is 5000, meaning each BPE on average
represents a longer context and needs to absorb more frames
than 100 BPEs for WSJ.

We apply transformer [8] and conformed [32] as our end-
to-end ASR model for WSJ and Librispeech, respectively.
Our models are trained by Adam optimizer [33] with a linear
warmup learning rate scheduler and the hyperparameters are the
same as [9].

3.3. WSJ

In addition to SpecAugmentation, we also apply speed perturba-
tion to obtain the speech data with 0.9x and 1.1x of the original
speed, resulting in approximately three times the original data.

We first train a baseline CTC model with our framework
and compare it with different models based on ESPnet as shown
in table 3. In comparison with pure CTC or AED without lan-

Table 3: Baseline performance (WER%) compared with other
ESPnet models on WSJ

dev93 eval92

CTC baseline w/o LM (ours) 15.6 12.7
ESPnet CTC w/o LM [9] N/A 15.5
ESPnet AED w/o LM 3 18.1 14.0

guage models, our baseline outperforms them, indicating that
our framework is set up correctly. table 4 and table 5 show
the results obtained with different subsampling factors, topolo-
gies and language models. We evaluate our models with the
official 3-gram language model and the 4-gram language model
trained with the conventional Kaldi recipe. To assess the impact
of topology and output frame rate on the behaviour of the blank
label, we calculate the ratio of the blank label being the maxi-
mum in the model outputs on eval92, the “Blank Ratio” column
in tables 4 and 5.
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Table 4: The performance (WER%) and the Blank Ratio (%) of
different models with a subsampling factor (SF) of 4 on WSJ

SF=4 4-gram LM 3-gram LM Blank Ratio
dev93 eval92 dev93 eval92

S1-T1 (CTC) 12.9 9.5 14.5 11.2 46.65
S2-T1 8.8 6.1 11.4 8.3 23.52

S2-T1⋆ 9.0 6.2 11.6 8.4 22.94
S2-T2⋆ 13.7 9.7 15.8 11.5 0.84
S2-T2 12.8 9.9 15.4 12.1 1.69
S3-T2 14.0 10.3 16.0 11.9 2.19

S3-T2⋆ 13.6 9.6 15.6 11.4 1.89
S3-T2⋆⋆ 13.9 10.3 15.9 11.8 1.76

Table 5: The performance (WER%) of different models with a
subsampling factor (SF) of 2 on WSJ

SF=2 4-gram LM 3-gram LM Blank Ratio
dev93 eval92 dev93 eval92

S1-T1 (CTC) 10.2 7.7 12.3 9.4 73.44
S2-T1 10.6 7.1 13.3 9.6 24.31

S2-T1⋆ 9.5 6.5 12.2 9.0 24.37
S2-T2⋆ 9.1 6.3 11.8 8.6 25.79
S2-T2 11.9 7.5 15.4 10.1 22.73
S3-T2 10.8 6.8 13.4 9.4 0.14

S3-T2⋆ 10.4 6.4 13.0 9.1 0.23
S3-T2⋆⋆ 10.9 6.9 13.5 9.6 0.19

3.4. Librispeech

We train Conformer models [32] on train960 from scratch. We
set the number of transformer blocks to 12, each with a hidden
size of 512 and 8 attention heads. The feed-forward network
has an inner dimension of 2048. The language models we ap-
ply here are the official 3-gram (tglarge) and 4-gram (fglarge)
language models provided by the dataset and blank ratios are
calculated on test-clean.

Table 6: The performance (WER%) of different topologies with
a subsampling factor of 6 on Librispeech

Sub6 4-gram LM 3-gram LM Blank Ratio
test-clean test-other test-clean test-other

S1-T1(CTC) 6.1 14.9 6.4 15.4 47.58
S2-T1 4.8 13.4 5.1 13.8 24.56

S2-T1⋆ 4.9 13.7 5.4 14.1 24.32
S2-T2⋆ 6.3 15.4 6.7 15.8 1.12
S2-T2 6.5 15.7 6.8 16.0 1.76

Table 7: The performance (WER%) of different topologies with
a subsampling factor of 4 on Librispeech

Sub4 4-gram LM 3-gram LM Blank Ratio
test-clean test-other test-clean test-other

S1-T1(CTC) 5.9 14.6 6.1 15.9 75.36
S2-T1 6.2 14.8 6.5 16.0 23.22

S2-T1⋆ 5.2 14.2 5.5 15.3 23.76
S2-T2⋆ 4.9 13.5 5.1 14.7 24.37
S2-T2 6.5 15.2 6.8 15.9 22.47

3.5. Analysis

With a fixed subsampling factor, we observe that S2-T1 out-
performs other topologies for larger subsampling factors (4 for
WSJ and 6 for Librispeech), as shown in tables 4 and 6, and
topologies *-T2* perform worse. This is because a larger sub-
sampling factor results in a shorter average output sequence

length, which means there are fewer possible alignments for
topologies with a #Minimum Traversal of 2, as they have longer
target sequences at the token level. This is analogous to an
extreme case where the length of the target sequence always
matches that of the output sequence, resulting in only one pos-
sible alignment and training the model using a cross-entropy
loss. However, the model may experience confusion if acoustic
features with the same label are not easily classified to be the
same class. Note that the alignment space of S2-T1 is a sub-
set of S2-T1⋆, which means all the alignments acceptable by
the former can always be accepted by the latter. However, a
larger alignment space does not necessarily result in better per-
formance. Comparing S3-T2, S3-T2⋆, and S3-T2⋆⋆, con-
sidering adding a self-loop makes the alignment space larger,
we find that adding one self-loop can make the performance
better but worse with two. Besides, as shown in tables 5 and 7,
when we decrease the subsampling factor for both datasets, the
best performance is achieved by S2-T2⋆, but not S2-T1. De-
creasing the subsampling factor increases the alignment space
for all topologies, and we find that the performance improves
for most topologies, except S2-T1 and S2-T1⋆. Furthermore,
although the alignment space of CTC, S2-T1, and S2-T1⋆ is
larger than that of S2-T2⋆, our results show that the S2-T2⋆
achieves the best performance. This suggests that having too
large an alignment space makes it harder for a model to train
effectively. Therefore, it is crucial to choose a proper topology
that reflects the acoustic characteristics of the input data and to
consider the Minimum Traversal value based on the subsam-
pling factor when training a model.

Among topologies *-T1*, we find that S2-T1 performs the
best compared to CTC and S2-T1⋆. Interestingly, S2-T1⋆
is slightly worse than S2-T1 but better than CTC, indicating
that the modelling ability increases as we introduce a new to-
ken for each phone in the topology. However, comparing S2-
T2, S2-T2⋆, S3-T2 and its variants, we find that adding new
tokens does not necessarily improves performance, as it intro-
duces more classes and makes it harder to classify.

Our study also sheds light on the behaviour of the blank la-
bel in relation to the topology and output frame rate. We found
that with a larger subsampling factor, the blank ratio is primar-
ily related to the T value (#Minimum Traversal) of the topol-
ogy, as shown in tables 4 and 6. Conversely, with a smaller
subsampling factor, the blank ratio is mostly related to the S
value (#States), as demonstrated in tables 5 and 7. The blank
label ratio is crucial for alignment quality [18], and if the ma-
jority of frames are classified as blank labels, the model outputs
become excessively peaky, and the model’s alignments become
less reliable. Therefore, topology selection plays a critical role
in controlling the blank ratio. Specifically, with a smaller sub-
sampling rate, we should prioritise #States, and with a larger
subsampling rate, we should focus on #Minimum Traversal.

4. Conclusions
In this paper, we systematically investigated the impact of dif-
ferent topologies and output frame rates on the performance of
a DWFST-based E2E ASR. Our findings demonstrate the im-
portance of carefully selecting a topology in order to effectively
train a model. We also discussed how to choose topology to
have more control of the blank ratio. These results can inform
the development of future E2E ASR systems, leading to im-
proved performance and more accurate transcription of speech
data.
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