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Abstract—Some End-to-End (E2E) Automatic Speech Recognition
(ASR) models, such as Attention-based Encoder-Decoder (AED) and
Recurrent Neural Network Transducer (RNN-T) are known to have
components that effectively act as internal language models (ILM), im-
plicitly modelling the prior probability of the output sequence. However,
the existence of an ILM in pure Connectionist Temporal Classification
(CTC) ASR systems remains debated. In this paper, we investigate
the existence and strength of an ILM in CTC systems. Since CTC
posterior probabilities cannot be analytically factorised, we propose a
novel empirical method to probe the ILM. After validating our method
on a hybrid DNN model with various external language models, we
apply it to CTC models trained under different conditions, examining
the effects of training data, modelling units, and training or pre-training
methods. Our results show no strong evidence of an ILM in CTC-based
ASR systems, even with the largest training dataset in our experiments.
However, we make the surprising finding that when a CTC encoder is
jointly trained with an AED loss, an ILM emerges, even when only the
CTC component is used in decoding.

Index Terms—Automatic Speech Recognition, Connectionist Temporal
Classification, Internal Language Model

I. INTRODUCTION

Since its introduction in 2006, Connectionist Temporal Classifi-
cation (CTC) [1] has gained widespread use in End-to-End (E2E)
Automatic Speech Recognition (ASR) due to its simplicity and effi-
cient combination with self-supervised pre-training [2], [3]. Although
newer architectures like Attention-based Encoder-Decoder (AED)
[4], [5] and Recurrent Neural Network Transducer (RNN-T) [6]
have emerged, sometimes offering better Word Error Rate (WER)
performance, CTC remains popular for its straightforward approach
and training efficiency [7]–[9].

E2E systems, directly modelling the posterior probability of the
output sequence P (Y |X), do not require the independent language
modelling component used in traditional HMM systems. However,
unlike CTC, both AED and RNN-T architectures do incorporate
a language model-like component – the decoder in AED and the
prediction network in RNN-T – that plays a strong role in capturing
language-related information from training data. It is widely accepted
and has been demonstrated that these systems contain a strong
internal language model as a consequence [10]. The existence of an
ILM can pose a problem when too closely tied to the language of a
specific training dataset, which can limit their generalisability across
different domains [11]. This limitation has driven significant research
into ILM adaptation for AED and RNN-T systems, underscoring the
need for more adaptable models [12]–[14]. In contrast, the existence
and importance of an ILM in CTC-based ASR systems remains a
topic of debate. While some researchers argue that in practical terms,
CTC functions purely as an acoustic model [15], others suggest that
an ILM exists and must be estimated and subtracted when the model

is applied to a domain that differs significantly from the training data
[16]. However, neither view has been definitively proven or disproven.

This paper aims to empirically investigate the existence and impact
of an ILM in CTC systems. As we cannot analytically factorise
CTC’s posterior into acoustic and language model parts, we employ
a masking strategy that allows us to probe a model’s sensitivity
to inter-word dependencies. We first verify the effectiveness of this
method on a hybrid acoustic model with a range of external language
models. Then, we apply this method to CTC systems under different
conditions, exploring how factors, such as training data, modelling
units, and training or pre-training methods, affect the ILM’s presence
and strength.

II. METHOD

A. CTC

Given an input speech x, represented either as a sequence of
feature vectors or as a raw waveform, we first process it through
an acoustic encoder. This encoder transforms x into a sequence
of hidden features or high-level representations. Subsequently, one
or more linear layers, culminating in a softmax activation function,
are applied. This process yields a probability distribution over each
token c in the token set C (which includes the blank label) at
each time step t, denoted as pt(c|x), where t = 1, 2, . . . , T . With
the conditional independence assumption, CTC models the posterior
probability p(y|x) by marginalising all possible alignments between
X and the target tokenised sequence Y (e.g., graphemes, phonemes,
Byte Pair Encodings (BPE) [17]),

p(y|x) =
∑

π∈B−1(y)

T∏
t=1

pt(πt|x). (1)

where B(π) is the operation of compressing repeated neighbouring
tokens and then removing blank labels from an alignment sequence
π. Note that despite the conditional independence assumption, the
potential for implicit language modelling theoretically arises from the
conditioning of each output token on the complete sequence x. We
aim to investigate whether such long-span dependencies are learned
in practice from CTC training.

B. Internal LM

Most existing E2E ASR methods, including CTC, AED, and RNN-
T, directly model the posterior probability p(y|x), which, according
to Bayes’ theorem, can be decomposed as

p(y|x) = p(x|y)p(y)
p(x)

, (2)

where p(x|y) is the acoustic model, p(y) is the language model, and
p(x) is the prior probability of the input sequence. The decomposition



implies that an E2E ASR system which directly models the posterior
probability inherently includes an ILM, regardless of the specific
method applied. However, the strength of the ILM might vary
significantly across different E2E ASR approaches. Since there is
no analytical method to explicitly separate the components in the
CTC posterior, we empirically investigate the characteristics of the
ILM using a masking strategy, as described below.

C. ILM Detection – Masking Strategy

To detect the potential existence of an internal language model
(ILM) within an E2E ASR system, we propose a novel evaluation
method. First, we introduce disturbances by introducing masking to
the utterances in the evaluation set. Whilst inspired by the work
of [16], our masking is applied at the word level, based on the
alignments generated by a HMM-based ASR system. Each word in
an evaluation utterance has a probability pm of being masked, with
its corresponding segment in the original waveform silenced, guided
by the word’s start time and duration from the alignment.

After applying the masking process, we decode the masked evalu-
ation set using a CTC-based E2E ASR model and measure the WER
for the unmasked words only. If the model functions mainly as an
acoustic model with minimal ILM influence, we would expect the
WER on the unmasked words to remain relatively stable, regardless
of the pm value. This expectation is based on the assumption that
the overall speech quality is preserved, even with the introduction of
silent segments from the masking.

In practice, of course, pure acoustic models also benefit from both
local cross-word context information – allowing the modelling of
effects such as co-articulation – as well as utterance-level information,
so can never be completely unaffected by increasing values of pm.
We therefore do expect the WER for unmasked words to rise as pm
increases. However, if the model has a strong ILM, we expect that the
degradation caused by masking will be greater because the masked
segments disrupt the language patterns learned during training. The
stronger the ILM, the more sensitive the ASR model will be to
changes in pm, leading to confusion and errors for the unmasked
words. Therefore, if model A has an acoustic model that is as strong
as, or stronger than, model B’s, but is more sensitive to masking, we
can conclude that model A has a stronger ILM.

It is important to clarify that when calculating the WER on a
masked evaluation set, the masked words are excluded from the
calculation. Further, we do not penalise the model for outputting
words during the silent region. We take this approach because the
masking process may not be perfect, and some portions of the
masked words might still be exposed to the model, potentially causing
substitution errors. Of course, if the masking is executed perfectly
and the model makes no predictions at the masked word’s position,
it is not penalised as a deletion error. Note that the masked words
are excluded from both the numerator and denominator in the WER
calculation. Further details on the methodology for calculating WER
in the context of masked utterances will be provided in section III-B.

III. EXPERIMENTS

A. Settings

In our study, we utilise the LibriSpeech dataset for experiments.
This dataset comprises three training subsets: train-clean-100, train-
clean-360, and train-other-500. To ensure a uniform acoustic con-
dition across our data, we first merge these three subsets into a
single dataset, train960. We then derive different subsets from this
merged dataset, including train10, train100, train320, train640, and
train960, each containing 10, 100, 320, 640, and 960 hours of data,

respectively. Importantly, a small dataset is always a subset of a larger
one, ensuring that the acoustic model trained on a smaller dataset is
always no better than the model trained on a larger dataset

We manually apply masking to 10% of the training data in each
training set to make the acoustic model robust to the edge effects
introduced by the masking process. Incorporating masked data helps
the acoustic model better handle masked inputs and also smoothes
the language patterns, as the masking is applied randomly at the
word level. It acts as gentle regularisation that we expect will not
significantly impact the learning of the internal language model (ILM)
if one does exist.

All E2E models in our experiments are Transformer-based, but
they differ in modelling units, training or pre-training methods, and
the amount of data used. For neural network training, we use two
optimisers: the AdamW optimiser with a learning rate of 10−4 for
all Transformer and convolution layers (if applicable). For the output
linear layers, we use the Adadelta optimiser with a learning rate of
0.9. Training is stopped when no further reduction in loss is observed
on the development set (specifically the dev-clean subset) for two
consecutive epochs.

As for decoding, for all CTC-based ASR models, we construct
decoding graphs and apply Viterbi decoding [18], using Kaldi’s
decode-faster [19] with a beam of 32 and a maximum activate
state of 5000, and with no external language models, to focus solely
on ILMs.

For word masking, we generate word-level alignments using
a Kaldi HMM-based model (tri6) trained on the LibriSpeech
dataset. To analyse how WER changes with different masking
probabilities (pm), we experiment with a range of pm values:
0.0, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, and 0.40. To minimise acous-
tic differences between dataset partitions, we merge the test-clean and
test-other subsets into a single test set. Masking is then applied to
the larger test set across the different pm values, resulting in seven
additional test sets. In total, we create eight test sets, including the
original unmasked set.

B. Metrics

For unmasked datasets, we use the standard WER calculation.
However, for masked evaluation sets, we adjust the calculation by
treating masked words as optional. When calculating WER for these
sets, we ignore one substitution or deletion error for each masked
word, as shown in fig. 1. In this example, the reference contains

Ref: The (quick) brown fox jumps over (the) **** lazy dog
Hyp: The ******* brown fox jump over t lazy lazy ***
Res: S I D

Fig. 1. Example of word error rate computation with optional masked words,
where “Ref:”, “Hyp”, and “Res” denote the reference sequence, the hypothesis
and the WER alignment results respectively. The words in parenthesis are
masked and optional in the reference. Capital letters S, I, and D denote
substitution, insertion, and deletion errors, respectively.

7 unmasked words and 2 masked words (shown in parentheses).
There is one substitution error, one insertion error, and one deletion
error. However, the substitution for the masked word “(the)” and the
deletion for the masked word “(quick)” are ignored. As a result, the
WER is calculated as 3/7.

When the model recognises parts of a masked word, we do not
count these as substitution errors, as seen with the masked word
“(the)” in fig. 1. Similarly, when a word is completely masked and
the model produces no output, we do not classify it as a deletion
error, as shown with the word “(quick)” in fig. 1.



C. Results and Analysis

1) Results on Hybrid Models: To validate our proposed masking
evaluation strategy, we first examine how the masking probability
affects the WER with a hybrid model [20], [21]. We use Kaldi’s
standard E2E chain model recipe to train a TDNN-F acoustic model
[22]–[24]. The model is then evaluated on the test set with different
masking probabilities, using various external language models. This
approach helps us determine whether the choice of language model
affects the WER sensitivity to pm while keeping the acoustic model
constant.

The results are shown in fig. 2. The LibriSpeech dataset provides
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Fig. 2. The WER(%) results of the hybrid models with different external
language models, where the x-axis represents the masking probability pm
and the y-axis denotes WER(%).

four external LMs: tgsmall, tgmed, tglarge, and fglarge,
all trained on the LibriSpeech LM training data. Since this text
dataset is much larger than the train960 transcription data, we also
introduce three additional external LMs, trained on the transcriptions
using KenLM [25]. These are bg-trn, tg-trn, and fg-trn,
representing 2-gram, 3-gram, and 4-gram LMs, respectively. Each
point in the figure represents the WER of the model with a specific
external LM and masking probability. To compare the effect of
different LMs, we perform linear regression, where the slope of the
regression line shows how sensitive the model is to masking.

As expected, the largest external LM, fglarge, has the steepest
slope, indicating that the model is most sensitive to masking when
using this LM. This occurs because the masking disrupts the language
model’s predictions, leading to more errors. In contrast, the model is
least sensitive to masking when using the weakest LM, bg-trn, a
2-gram model trained on the train960 transcription data. Since this
LM is not strong enough to significantly influence the predictions,
masking has less effect.

These findings demonstrate that our masking evaluation strategy
effectively measures the influence of external LMs in hybrid models.
Assuming that the external LM in hybrid models behaves similarly

to the ILM in E2E ASR models, this approach can be applied to
explore ILMs in E2E ASR models as well.

2) Results on Data Quantity: First, we examine whether the
amount of training data affects the existence or strength of the ILM
in CTC ASR models. To do this, we fine-tune a pre-trained wav2vec
2.0 model [2], specifically WAV2VEC2_LARGE_LV60K, which was
trained on 60,000 hours of unlabelled data. We use five different
training data sizes: train10, train100, train320, train640, and train960,
with characters as the modelling units. The results are presented in
fig. 3. It’s reasonable to assume that a larger training dataset would
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Fig. 3. The WER(%) results of the wav2vec 2.0 models trained with different
amount of training data.

lead to a stronger ILM. If the ILM were strong enough, we would
expect to see a pattern similar to that in hybrid models—where larger
datasets make the model more sensitive to masking. However, our
results show the opposite: models trained on smaller datasets are
more sensitive to masking.

It’s important to remember that masking challenges both the ILM
and the acoustic model. Therefore, we can conclude that either the
ILM in CTC models is too weak to be significantly impacted by
masking, or the acoustic model plays a larger role in recognition
than the ILM. Another possibility is that even 960 hours of training
data may not be enough to develop a strong ILM in CTC models.
More data might be needed to observe the trend seen in fig. 2, even
though we have already shown that the training transcription data is
sufficient to create a strong external LM sensitive to masking.

3) Modelling Units: Next, we investigate whether the type of
modelling units affects the existence of an ILM in CTC models.
To explore this, we continue using the wav2vec2.0 model, but this
time we train it on the largest available dataset, train960, only. We
experiment with four different types of modelling units: characters,
500 BPE units, 1000 BPE units, and 5000 BPE units [17].

We chose the train960 dataset for two main reasons. First, using
the largest BPE set (5000 units) with smaller datasets could lead to
sparsity issues, which would negatively affect performance. Second,
we aim to observe the maximum possible difference in ILM strength



across different modelling units. By training on the largest dataset,
we can assess whether changing the modelling units has a significant
impact on the ILM. The results of this experiment are shown in
fig. 4. Although one might expect different modelling units to affect
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the ILM in CTC systems, our findings suggest otherwise. Regardless
of the type of modelling units used, the increase in WER remains
consistent as the masking probability changes. This indicates that for
CTC ASR models, the ILM’s ability to learn from the training data
is not significantly influenced by the choice of modelling units. In
summary, while the selection of modelling units is important for ASR
system design, it does not appear to have a significant impact on the
ILM in CTC models.

4) Results on Pre-training and Training Methods: The final aspect
we examine is the impact of pre-training and training methods on the
ILM in E2E ASR systems. We investigate four different models, each
trained or pre-trained under different conditions:

• The wav2vec 2.0 model (W2V2-CTC)1 fine-tuned with CTC
• The Whisper model (WSP-CTC) [5], pre-trained on a large

corpus of transcribed data2. For our study, we use only the
encoder part of this model to fine-tune our CTC models.

• A Transformer model (TRSF-CTC) trained from scratch, with-
out any pre-training, using the same hyper-parameters as the
Whisper model encoder, trained with CTC.

• A Transformer model trained with ESPnet, using the standard
CTC-AED joint training recipe [26], [27], with the same hyper-
parameters as the Whisper model. During decoding, we set the
CTC weight to 1.00 to make it function as a CTC model, which
we denote as TRSF-JCTC.

• The same Transformer model as above, but during decoding, we
assign the CTC weight to 0.00 to make it function as an AED
model, which we denote as TRST-JAED.

For fine-tuning the wav2vec 2.0 model, we adjust all 24 Trans-
former layers along with the two linear output layers. Similarly, for
both the Whisper and Transformer models, we train all 24 Trans-
former layers, along with two convolutional layers at the beginning

1WAV2VEC2_LARGE_LV60K
2medium.en

and two linear layers at the end. Each model contains approximately
300 million trainable parameters. Our goal is to determine whether
pre-training affects the ILM in CTC models. Additionally, by com-
paring the CTC-AED joint-trained model with different CTC weights
during decoding, we can assess how the ILM responds to our masking
evaluation strategy.

For this analysis, we use the train960 dataset to train each of the
four models. The first three models use characters as the modelling
units, while the CTC-AED joint-trained model uses 5000 BPE units.
The results are shown in fig. 5. We observe that models trained purely
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Fig. 5. The WER(%) results with different training/pre-training methods.

with CTC, W2V2, WSP and TRSF-CTC show similar sensitivity
to masking, indicating that pre-training does not significantly affect
ILM. However, when examining the joint-trained model with a CTC
weight of 1.00, TRSF-JCTC, the model becomes more sensitive to
masking, suggesting that joint training is more likely to encourage the
development of a stronger ILM, even in the encoder. Additionally,
when the CTC weight is set to 0.00, resulting in an AED model,
TRSF-JAED, the sensitivity to masking increases even further. This
suggests that joint training can indeed lead to a strong ILM, with
some ILM components residing in the decoder of the AED model.
We assume this is because the independence assumption in CTC
limits the development of a strong ILM, while joint training with
AED, which lacks this assumption, encourages a stronger ILM.

IV. CONCLUSION

In this paper, we introduced a novel masking evaluation strategy
to investigate the existence of the ILM in E2E ASR systems. Our
analysis of CTC-based models showed that the ILM is relatively
weak, with minimal impact from masking, regardless of training
data quantity, modelling units, or pre-training methods. However, we
cannot deny that using larger datasets beyond 960 hours might reveal
a stronger ILM. Further investigation with the CTC-AED joint-trained
model revealed the interesting finding that joint training with an AED
objective strengthens the ILM of the model, even when it is used as
a pure encoder with a CTC output layer.
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