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ABSTRACT

Connectionist Temporal Classification (CTC) has emerged as
a fundamental technique in Automatic Speech Recognition
(ASR), renowned for its ability to marginalise all possible
alignments between input and target sequences. This study
reevaluates the traditional dependency on prefix beam search,
which typically considers multiple alignments for each hy-
pothesis, in CTC-based models. Our findings initially in-
dicate the absence of a single dominant path in the lattices.
However, we discover that the Viterbi decoder can effectively
emulate the performance of a prefix beam search, as the hy-
potheses it identifies tend to be dominant in the lattices. This
leads us to propose that an effective CTC-like model should
not only aim for high accuracy but also align the optimal hy-
pothesis with the most probable path, thereby enhancing the
robustness of Viterbi decoding. Furthermore, our insights ex-
tend to a variety of topologies, demonstrating their applica-
bility within a more comprehensive ASR framework.

Index Terms— ASR, E2E ASR, Differentiable WFST,
Topology, Viterbi Decoding

1. INTRODUCTION

In recent years, End-to-End (E2E) Automatic Speech Recog-
nition (ASR) has simplified the development process. This
field has seen a thorough exploration of methods such as
Connectionist Temporal Classification (CTC) [1], Attention-
based Encoder-Decoder (AED) [2], E2E Lattice-Free Max-
imum Mutual Information (LF-MMI) [3, 4], and Recurrent
Neural Network Transducer (RNNT) [5]. Progress has been
made in E2E ASR performance, with the introduction of new
neural network architectures like Transformer [6], Squeeze-
former [7], and Conformer [8], and the use of unlabelled data
through self-supervised [9] or semi-supervised learning [10].

One challenge of training ASR models is aligning a se-
quence of acoustic observations with its corresponding tran-
scription. The Hidden Markov Model (HMM) [11, 12], CTC
[1] both address this by marginalising probabilities along all
possible alignments. This is sometimes known as “full-sum”
training [13]. As for decoding methods, we can classify them

This work was supported by a Consolidated Studentships Award funded
by Huawei Technologies Co., Ltd.

into two categories based on how they handle paths corre-
sponding to the same hypothesis. The first style, Viterbi-
style, finds the single best path in the searching space and
considers its corresponding word sequence as the best hy-
pothesis [11, 12]. The second one, denoted as full-sum in
this paper, considers all or a subset of the paths associated
with each hypothesis, sums the paths’ probabilities to get the
hypothesis’ probability, and then decides the best hypothesis
[14, 15]. While full-sum training is common in ASR models
[16], traditional HMM-based ASR systems typically apply
a Viterbi decoder to achieve optimal performance [11, 12].
Unlike HMM-based ASR, CTC-based E2E ASR usually re-
lies on a full-sum style decoder [1, 17]. Since in most cir-
cumstances, the Viterbi decoder is more efficient [15], then
a question comes into our mind, i.e., how reliable the Viterbi
decoder is with a CTC-based E2E ASR? Traditionally HMM-
based ASR usually applies the Bakis topology, a 3-state topol-
ogy, while the CTC topology has a special 1-state topology
with a special shared blank state. Thus, We also wonder
whether the topology plays a significant role in the above-
mentioned decoding behaviour.

In this paper, we analyze the lattices from different topolo-
gies using two self-defined metrics. To flexibly implement
different topologies including CTC and calculate the loss
function during training, we apply Differentiable Weighted
Finite-State Transducer (DWFST) [18]. Our goal is to en-
hance understanding of the Viterbi decoding process with
CTC-like E2E ASR.

2. METHOD

2.1. Training

Given input speech X in the form of a sequence of feature
vectors or raw waveform, by applying an acoustic encoder,
we obtain a sequence of hidden features or high-level rep-
resentations. Next, we apply a (set of) linear layer(s) with
a final softmax activation to obtain a probability distribution
over each token πt at time step t, pt(πt|X), t = 1, 2, . . . , T .

The posterior probability p(Y |X) is modelled as

p(Y |X) =

∑
π∈Π(Y ;T ◦L) p(π|X)∑

Y ′
∑

π∈Π(Y ′;T ◦L) p(π|X)
, (1)



where in the denominator, Y ′ represents any arbitrary word
sequence, and Π(Y ;F ) denotes the set of all the token se-
quences (“paths”) corresponding to the output label sequence
Y in the FST F . T and L denote the Token FST and the
Lexicon FST, respectively, and ◦ denotes the composition of
WFSTs [19, 20, 18]. We apply the conditional independence
assumption and thus

p(π|X) =

T∏
t=1

pt(πt|X). (2)

We compute the numerator and the denominator in eq. (1)
with DWFST. Specifically, for the numerator,∑

π∈Π(Y ;T ◦L)

p(π|X) = TotalScore(E ◦ Strn), (3)

where TotalScore denotes the total score operation, and E
is the Emission FST constructed from the neural network
model’s output. Strn is the training graph derived from the
target sequence Y ,

Strn = T ◦ (L ◦W ), (4)

where W is a linear Word FST with the word sequence Y
as input and output labels [18]. We should emphasise that
the term topology discussed in this paper is the topology of
T which describes how to form a modelling unit (phoneme,
BPE, or character) from NN’s outputs.

Our previous work [21] has underscored the importance
of normalisation (the denominator term in eq. (1)) for achiev-
ing training convergence. However, it is unrealistic to create
a training graph as eq. (4) for every possible word sequence.
Thus, to compute the denominator, given E,we solely take
into account the paths that are acceptable for T , so we have∑

Y ′

∑
π∈Π(Y ′;T ◦L)

p(π|X) ≈ TotalScore(E ◦ T ). (5)

We note that when T is set as CTC topology, as shown in
fig. 1a, any arbitrary token sequence can be accepted by T , so
the denominator is always one, resulting in

p(Y |X) =
∑

π∈Π(Y ;TCTC◦L)

p(π|X), (6)

which is equivalent to the CTC loss function [1]. Except for a
few topologies, e.g. CTC, not all paths in E can be accepted
by T , which makes the denominator not equal to one.

2.2. Decoding

We construct the decoding graph as

Sdec = T ◦ (L ◦G), (7)

where G is a grammar FST, often obtained from an n-gram
language model [20]. For simplicity, operations such as de-
terminisation and minimisation [19] have been omitted in the
equation. With the output of the neural network model and
the decoding graph, we apply the Viterbi decoder [22, 12] to
get the best hypothesis

W ∗ = argmaxW [log p(W ) + α max
π∈Π(W ;Sdec)

log p(π|X)],

(8)
where p(W ) is determined by the language model, which is
encoded in Sdec as transition weights, and α is the acoustic
weight.

To highlight the difference between the two decoding
methods, the full-sum decoding strategy can be expressed as:

W ∗ = argmaxW [log p(W ) + α
∑

π∈Π(W ;Sdec)

log p(π|X)].

(9)
The key difference lies in whether we sum multiple (not
necessarily all as some pruning may be applied) alignments’
probabilities together. The latter style of decoders is com-
monly employed in CTC and CTC-related ASR systems
[14, 1, 23, 24, 17]. Note that we only utilise the Viterbi
decoder and assess its reliability with the following metrics.

2.3. Lattice and Metrics

As it is often computationally impractical to compose the
Emission FST with the decoding graph and analyze the
resulting FST in its entirety [22], we adopt an alternative
approach to assess the reliability of results produced by the
Viterbi decoder. First, for each evaluation utterance, we gen-
erate a lattice L using the method described in [22]. Then,
we apply the Viterbi decoder and get the best hypothesis W ∗.
It is worth noting that the lattice inherently includes the best
path identified by the Viterbi decoder.

Given the lattice L and the best hypothesis W ∗, our first
metric, Best Path Proportion (BPP) Ppath, is the probability
proportion of the best path among all the paths corresponding
to W ∗, i.e.,

Ppath =
maxπ∈Π(W∗;L) p(π|X)∑

π∈Π(W∗;L) p(π|X)
. (10)

A higher value of Ppath implies a more concentrated ASR
model. Some people may believe that there is a dominant path
in the lattice which eats up a large probability proportion, but
we will see whether this is true or not in the next section.

Another metric we propose is the probability proportion
of W ∗ within the entire lattice L, Best Hypothesis Proportion
(BHP), i.e.,

Phypo =

∑
π∈Π(W∗;L) p(π|X)∑

W

∑
π∈Π(W ;L) p(π|X)

, (11)



where
∑

W is the summation over all the hypotheses in L. It
is important to note that, Phypo > 0.5 indicates that the best
hypothesis identified by the Viterbi decoder in eq. (8) aligns
with the full-sum decoder in eq. (9), where the summation is
limited to the lattice.

3. EXPERIMENTS

3.1. Settings

We conduct experiments on WSJ and Librispeech by fine-
tuning the wav2vec 2.0 model1, which was pre-trained on 960
hours of unlabeled speech data from the Librispeech dataset
[9]. We fine-tune the encoder part of the model plus a linear
output layer with a log-softmax activation while keeping the
feature extractor fixed. We employ phonemes as modelling
tokens, utilising CMUDict on WSJ and the official lexicon on
Librispeech.

To enhance the generalisation capabilities of the models
and mitigate the risk of overfitting, we incorporate speed per-
turbation and SpecAugmentation techniques [25]. We utilise
the Adam optimiser with warm-up steps of 2500 and 5000 for
WSJ and Librispeech, respectively. The learning rate linearly
increases during the warm-up phase, reaching its maximum
value (2e-5 for WSJ and 3e-5 for Librispeech), and gradually
decreases afterwards.

Throughout our experiments, we employ Kaldi [26] for
data preparation, PyTorch [27] for neural network training,
and k22 as the DWFST backend. As for decoding, we utilise
the Viterbi decoder, decode-faster in Kaldi, k2 for lat-
tice generation. To enhance the reproducibility of our exper-
iment results presented in this paper, we have made our code
open-source.3

As mentioned in section 1, the topology may influence the
decoding behaviour discussed in this paper. Thus, we explore
eight different topologies, as summarised in fig. 1. For all the
topologies, there is an optional shared blank label to ensure a
fair comparison with CTC (S1-T1).

3.2. WER Performance

We apply the Viterbi decoder with a beam size of 32 and a
maximum active state of 2000 on both WSJ and Librispeech.
As for acoustic weight, we tune it on each development set
to achieve optimal performance. On WSJ, we apply the offi-
cial 4-gram language model (LM) and for Librispeech, the 3-
gram LM (tglarge) is employed. The WER performance with
different topologies on WSJ and Librispeech is presented in
table 1. Notably, we observe that our models achieve superior
WER performance on WSJ compared to the state-of-the-art
results reported in [3]. We find that S3-T2⋆ and S3-T2⋆⋆

1WAV2VEC2 BASE in torchaudio.pipelines
2https://github.com/k2-fsa/k2
3https://github.com/ZhaoZeyu1995/Waterfall

cannot converge very well on Librispeech for some unknown
reason. However, this is useful for the following analysis with
the metrics aforementioned. We would like to emphasise that
the main purpose of showing the WER results is to make sure
our models are working properly.

Table 1: The WER(%) performance with different topologies
on WSJ and Librispeech

Topology WSJ Librispeech

dev93 eval92 test-clean test-other

S1-T1 3.9 2.6 3.9 8.5
S2-T1 3.9 2.7 3.9 8.2

S2-T1⋆ 3.9 2.6 3.9 8.3
S2-T2⋆ 3.9 2.6 4.2 9.0
S2-T2 4.2 2.8 4.0 8.3
S3-T2 4.1 2.7 4.2 8.9

S3-T2⋆ 4.3 3.0 6.6 11.6
S3-T2⋆⋆ 4.1 2.9 5.9 11.4

3.3. Lattice Analysis

For lattice generation, we utilize the same hyperparameters as
the decoding phase and set the lattice beam size to match the
search beam (32), ensuring that most paths from the Viterbi
decoding are retained in the lattice.

3.3.1. Best Path Proportion

We first examine the BPP, Ppath, as defined in eq. (10). We
compute the metric for all utterances in the evaluation sets
(eval92 for WSJ and test-other for Librispeech), and mean
values are shown in table 2.

Regardless of the applied topology, we consistently ob-
serve that Ppath remains significantly small, with none of the
values surpassing one per cent, which suggests that there is
no dominant path in the searching space and expecting the
model to learn a highly confident alignment is unrealistic. We
hypothesise that this limitation stems from the training ob-
jective, where probabilities are summed across all possible
alignments based on the transcription. It is not feasible to ask
the models to learn the best alignment and assign it a very
high probability as we did not give such information to the
model during training. However, the question is whether the
Viterbi decoder is reliable in the case where there is no domi-
nant path, as we have seen.

Table 2: BPP (average) on WSJ and Librispeech

WSJ (eval92) Librispeech (test-other)

S1-T1 0.285% 0.633%
S2-T1 0.119% 0.576%

S2-T1⋆ 0.0970% 0.621%
S2-T2⋆ 0.0113% 0.148%
S2-T2 0.0373% 0.311%
S3-T2 0.0844% 0.364%

S3-T2⋆ 0.00643% 0.294%
S3-T2⋆⋆ 0.00390% 0.473%



A <blk>

(a) S1-T1 (CTC)

<blk>A1A0

(b) S2-T1

<blk>A1A0

(c) S2-T1⋆

<blk>A1A0

(d) S2-T2

<blk>A1A0

(e) S2-T2⋆

<blk>A2A1A0

(f) S3-T2

<blk>A2A1A0

(g) S3-T2⋆

<blk>A2A1A0

(h) S3-T2⋆⋆

Fig. 1: Topologies investigated in this paper, where ‘<blk>’ denotes the shared optional blank label. Note that in some cases
the blank label is unskippable in CTC but we omit it for simplicity. Sx-Ty means there are x states for each phone, the minimum
traversal frame is y, and one ⋆ means one more self-loop is added.

Interestingly, even though the best alignment identified
by the Viterbi decoder occupies a minuscule proportion, the
WER performance remains acceptable, as demonstrated in ta-
ble 1. We believe this can be explained by our second metric,
BHP Phypo.

3.3.2. Best Hypothesis Proportion

According to BHP’s definition in eq. (11), when Phypo > 0.5,
the Viterbi decoding result in eq. (8) is the same as eq. (9),
where multiple paths within the lattice are considered. Sim-
ilarly to Ppath, we also compute Phypo for each utterance
in the evaluation sets and then calculate the frequency of
Phypo > 0.5, which is presented in table 3.

Table 3: The ratio of Phypo > 0.5 on WSJ and Librispeech

WSJ (eval92) Librispeech (test-other)

S1-T1 87.0% 59.5%
S2-T1 92.7% 62.1%

S2-T1⋆ 90.9% 61.1%
S2-T2⋆ 91.5% 62.5%
S2-T2 89.7% 60.3%
S3-T2 93.6% 58.8%

S3-T2⋆ 91.8% 45.4%
S3-T2⋆⋆ 92.1% 39.8%

We find that WER is correlated with the ratio of Phypo >
0.5. In table 1, on WSJ, all the topologies achieve roughly
the same WER performance, and their ratios are also close.
Comparing WER on WSJ and Librispeech, we note that a
lower ratio tends to give a higher WER. Particularly, the S3-
T2⋆ and S3-T2⋆⋆ topologies do not perform well on Lib-
rispeech due to convergence issues, and they have very low
ratios of Phypo > 0.5. As we mentioned, a higher frequency
of Phypo > 0.5 means a higher chance of getting the Viterbi
decoder equivalent to a full-sum decoder on the lattice, indi-
cating the best hypothesis found by the Viterbi decoder more
reliable.

To further investigate the relationship between the ratio
and WER, we partition the utterances in eval92 into two sub-

sets: one with Phypo > 0.5 and the other with Phypo < 0.5.
We then evaluate the WER on these subsets separately. The
results are presented in table 4.

Table 4: WER% in two subsets of eval92

Phypo > 0.5 Phypo < 0.5

S1-T1 1.89 8.12
S2-T1 2.48 6.83

S2-T1⋆ 2.33 4.72
S2-T2⋆ 2.24 5.71
S2-T2 2.28 5.16
S3-T2 2.35 4.75

S3-T2⋆ 2.40 7.43
S3-T2⋆⋆ 2.32 5.36

The results show that the models perform better on the
subset whose utterances have Phypo > 0.5 than the other sub-
set. This is because, again, when Phypo > 0.5, the Viterbi
process in eq. (8) is equivalent to eq. (9), where all the paths
in the lattice are considered. Therefore, Phypo > 0.5 im-
plies that we are virtually decoding with a full-sum decoder
even though the Viterbi decoder is applied. Thus, even though
there is no dominant path, as we have only seen small Ppath

values, a high value of Phypo can ensure that the Viterbi de-
coder can effectively and reliably operate. Comparing CTC
(S1-T1) topology with others, it is less robust as it achieves a
much better WER on the subset Phypo > 0.5 but a relatively
much worse WER on the other subset. People may prefer a
model with which the Viterbi decoder is still reliable even for
utterances whose Phypo < 0.5.

4. CONCLUSION

In this study, we examined the reliability of Viterbi decod-
ing in CTC-like E2E ASR across various topologies. Our
lattice analysis revealed that a dominant path for the Viterbi-
determined hypothesis is absent. However, decoding results
remain reliable if the hypothesis occupies over half of the lat-
tice. Compared with other topologies, CTC is not optimal
concerning WER and robustness with the Viterbi decoder.
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