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ABSTRACT
The adaptability of End-to-End (E2E) Automatic Speech
Recognition (ASR) models across diverse datasets remains
a challenge, often attributed to acoustic model (AM) gener-
alisability and the internal language model (ILM) mismatch.
This study delves into the impact of topology on adaptabil-
ity in Differentiable WFST-based ASR. Through evaluations
on various ASR corpora, we discern a significant influence
of topology on adaptability. Notably, Connectionist Tempo-
ral Classification’s performance diminishes with substantial
acoustic feature deviations from its training set. Addition-
ally, we confirm that the internal language models within
these topologies are sufficiently weak, indicating that acous-
tic model generalisability is the primary factor influencing
adaptability.

Index Terms— E2E ASR, Differentiable WFST, Topol-
ogy, Internal Language Model, Acoustic Modelling

1. INTRODUCTION

Adapting an End-to-End (E2E) Automatic Speech Recogni-
tion (ASR) model from one dataset to another presents signif-
icant challenges, primarily due to the acoustic and linguistic
feature mismatches between the source and target domains
[1–5]. In E2E ASR, regardless of the methodologies em-
ployed [6–8], there is a consistent effort to directly model the
posterior p(Y |X), where X denotes the speech input and Y
represents the target sequence. According to Bayes’ rule,

p(Y |X) =
p(X|Y )p(Y )

p(X)
, (1)

in an E2E ASR model, two primary components are implic-
itly present: an Acoustic Model (AM), represented as p(X|Y )
and an “Internal” Language Model (ILM), denoted as p(Y ).
A significant portion of research has centred on domain adap-
tation placing a greater emphasis on the ILM [1–3,5]. This is
particularly crucial as a mismatched ILM can lead to subopti-
mal performance on evaluation data [1–3, 5]. Notably, much
of this research has been grounded in the frameworks of the
Recurrent Neural Network Transducer (RNN-T) [7] and the
Attention-based Encoder Decoder (AED) [8]. This might be

attributed to the inherent language model-like structures in
both: the prediction network in RNN-T and the decoder in
AED. While the focus on ILM is substantial, there is also a
body of work dedicated to the AM aspect [4,9], exploring the
acoustic modelling and adaptive capabilities of Connection-
ist Temporal Classification (CTC) [6] and Lattice-Free Max-
imum Mutual Information (LF-MMI) [10, 11]. However, we
posit that for effective adaptation of an E2E ASR model to un-
familiar speech data, both AM and ILM components warrant
consideration.

CTC inherently adopts a one-state topology as high-
lighted in [12]. The topology’s role in E2E ASR is crucial
for acoustic modelling, as it defines how modelling units
are constructed from neural network (NN) outputs. While
Hidden Markov Model (HMM) ASR underwent extensive
topology exploration, culminating in the Bakis topology [13],
CTC gained popularity without in-depth evaluation of its in-
herent topology. We observe that CTC’s simplistic one-state
topology struggles to generalise across varied acoustic con-
ditions. This raises questions about the topology’s effect on
AM generalisability and its subsequent impact on adaptabil-
ity. Besides, we are also curious about whether topology
may influence ILM. Fortunately, Differentiable Weighted
Finite-State Transducer (DWFST) [14] enables us to explore
various topology configurations. This study examines the
role of topology in DWFST-based E2E ASR, focusing on
adaptability in both AM and ILM.

2. METHOD

2.1. Training

Given input speech X in the form of a sequence of feature
vectors or raw waveform, by applying an acoustic encoder,
we obtain a sequence of hidden features or high-level rep-
resentations. Next, we apply a (set of) linear layer(s) with
a final softmax activation to obtain a probability distribution
over each token πt at time step t, pt(πt|X), t = 1, 2, . . . , T .

The posterior probability p(Y |X) is modelled as

p(Y |X) =

∑
π∈Π(Y ;T ◦L) p(π|X)∑

Y ′
∑

π∈Π(Y ′;T ◦L) p(π|X)
, (2)



where in the denominator, Y ′ represents any arbitrary word
sequence, and Π(Y ;F ) denotes the set of all the token se-
quences (“paths”) corresponding to the output label sequence
Y in the FST F . T and L denote the Token FST and the
Lexicon FST, respectively, and ◦ denotes the composition of
WFSTs [12, 14, 15]. We apply the conditional independence
assumption and thus

p(π|X) =

T∏
t=1

pt(πt|X). (3)

We compute the numerator and the denominator in eq. (2)
with DWFST. Specifically, for the numerator,∑

π∈Π(Y ;T ◦L)

p(π|X) = TotalScore(E ◦ Strn), (4)

where TotalScore denotes the total score operation, and E
is the Emission FST constructed from the neural network
model’s output. Strn is the training graph derived from the
target sequence Y ,

Strn = T ◦ (L ◦W ), (5)

where W is a linear Word FST with the word sequence Y
as input and output labels [14]. We should emphasise that
the term topology discussed in this paper is the topology of T
which describes how to form a modelling unit (e.g., phoneme,
character, or byte pair encoding [16]) from NN’s outputs, so
it is crucial to the AM generalisability.

Our previous work [17] has underscored the importance
of normalisation (specifically of the denominator term in
eq. (2)) for achieving training convergence. However, it is
unrealistic to create a training graph as eq. (5) for every possi-
ble word sequence. Thus, to compute the denominator, given
E,we solely take into account the paths that are acceptable
for T , so we have∑

Y ′

∑
π∈Π(Y ′;T ◦L)

p(π|X) ≈ TotalScore(E ◦ T ). (6)

We note that when T is CTC topology, as shown in fig. 1a,
any arbitrary token sequence can be accepted by T , so the
denominator is always one, resulting in

p(Y |X) =
∑

π∈Π(Y ;TCTC◦L)

p(π|X), (7)

which is equivalent to the CTC loss function [6]. Except for a
few topologies, e.g. CTC, not all paths in E can be accepted
by T . This leads to a denominator not equal to one.

2.2. Decoding

We construct the decoding graph as

Sdec = T ◦ (L ◦G), (8)

where G is a grammar FST, often obtained from an n-gram
language model [12]. For simplicity, operations such as de-
terminisation and minimisation [15] have been omitted in the
equation. With the output of the neural network model and
the decoding graph, we apply the Viterbi decoder [18, 19] to
get the best word sequence

W ∗ = argmaxW [log p(W ) + α max
π∈Π(W ;Sdec)

log p(π|X)],

(9)
where p(W ) is determined by the language model, which is
encoded in Sdec as transition weights, and α is the acoustic
weight.

3. EXPERIMENTS

3.1. Topologies

For a comprehensive investigation, we examine eight vari-
ous topologies, as illustrated in fig. 1. S1-T1 is the standard
CTC topology and serves as our baseline. In this configura-
tion, each phone corresponds to a single token, and a manda-
tory blank label acts as a separator for consecutive repeated
phones. S2-T1 is inspired by our previous work [17] to en-
hance the modelling capabilities by introducing an additional
state for each phone. This topology comprises a primary state
without a self-loop and an optional and skippable secondary
state. S2-T1⋆ is an adaptation of S2-T1, distinguished by the
inclusion of a self-loop on the first state. To delve deeper into
the implications of frame absorption, we present five more
topologies. S2-T2⋆ extends S1-T1 by incorporating an ad-
ditional state equipped with a self-loop. S2-T2 is a variant of
S2-T2⋆ without the self-loop. We then introduce S3-T2 by
retaining the same minimum traversal frame and integrating
an extra state. Finally, S3-T2⋆ and S3-T2⋆⋆ are variants
of S3-T2, with modifications in the self-loop and skip transi-
tion configurations respectively.

For consistency across comparisons, all the topologies
mentioned above include a shared optional blank token to
keep a fair comparison with the CTC topology.

3.2. Datasets

To assess the AM generalisability, we train the models with
various topologies on Wall Street Journal (WSJ) dataset,
which offers around 80 hours of speech data, and evaluate
them on various corpora. For evaluation, we utilise multiple
datasets: WSJ(eval92, 0.7 hours), LibriSpeech (test-other, 5.3
hours), Tedlium3 (2.6 hours), and AMI (8.6 hours). While
both LibriSpeech and WSJ feature professionally recorded
speech in controlled settings, Tedlium3, sourced from TED
talks, offers a less pristine audio quality. AMI, capturing au-
dio in meeting scenarios with overlapping speech, stands out
as the most challenging dataset in our evaluation. The above
evaluation sets allow us to assess the adaptive capabilities and
robustness of the different topologies in various scenarios.
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Fig. 1: Illustrations of the 8 topologies investigated in this paper. <blk> denotes the shared optional blank label. Note that in
some cases the blank label is unskippable for CTC but we omit it for simplicity. Sx-Ty means there are x states for each phone,
the minimum traversal frame is y, and one ⋆ means one more self-loop is added.

3.3. Data Clustering

Apart from performing adaptation between public datasets,
we create an additional controlled experiment on two subsets
of recordings from Tedlium3 training set (2351 recordings in
total). We aim to, in an unsupervised manner, create two sub-
sets that dramatically vary in terms of language modelling but
have consistent acoustic patterns.

We first map all Tedlium3 documents into unigram bag-
of-words vectors, with words appearing less than 3 times
globally turned into <unk>. Then term frequency-inverse
document frequency (TF-IDF) weighting is applied on a log-
arithmic scale with base 10 [20]. With these vectors, we
perform k-means clustering [21]; having an unknown num-
ber of latent clusters, we loop k from 2 to 15 and inspect
the two largest clusters as potential subsets. Our constraints
on cluster selection are as follows: 1) minimising the differ-
ence between the number of recordings in the two clusters to
achieve two balanced subsets; 2) maximising the total number
of recordings in the two clusters to have ample data for train-
ing; 3) maximising the perplexity of a language model trained
on one subset and scored on the other subset, to maximise the
language difference.

Empirically choosing k as 6, we obtain two primary sub-
sets: C0 with 798 recordings and C1 with 719. To balance
the subsets, we randomly exclude 79 from C0. Next, from
the adjusted subsets, 71 recordings are randomly allocated to
development (20 for each, dev0 and dev1) and test sets (51
for each, test0 and test1), leaving 648 for training (train0 and
train1). Using KenLM [22], we train two 3-gram LMs on
train0 and train1, and measure perplexity on the combined
development and test sets. These two 3-gram LMs are also
utilised later in our ASR experiments for decoding.

Table 1 shows a notable perplexity gap between C0 and
C1. Given that both subsets originate from Tedlium3, they ex-
hibit acoustic similarities, suggesting minimal challenges in
acoustic adaptability. Consequently, topologies with a strong
ability to learn the internal language model may struggle to
adapt between the subsets.

Table 1: Perplexity of subset LMs on held-out sets.

LM0 (train0) LM1 (train1)
(dev0+test0) 207.92 259.29
(dev1+test1) 244.65 191.75

3.4. Settings

In our training setup, we initialise with the wav2vec 2.0 model
[23] pre-trained on the expansive Libri-Light dataset with 60k
hours of untranscribed data (WAV2VEC2 LARGE LV60K).
We fine-tune the last 12 transformer layers of the model and
the output linear layers on WSJ. We employ the Adam opti-
mizer with a learning rate of 10−4 for the wav2vec 2.0 model,
while the output linear layers utilise the Adadelta optimizer
with a learning rate of 0.9. Our data preparation follows
Kaldi [24] and ESPnet [25]. With PyTorch [26] driving our
neural network training, we apply k21 as the DWFST back-
end. In all experiments, we utilise 39 English phonemes as
the modelling units. For the S1-T1 topology, the output units
total 41 (comprising 39 phones, <unk>, and <blank>). The
S2-* topologies have 81 output units, and the S3-* topologies
have 121. All audio inputs are resampled to 16kHz (if not
originally at this rate) and normalised [23]. To augment our
dataset, we apply speed perturbation on WSJ. For decoding,
we apply the Viterbi decoder from Kaldi, complemented by
specific n-gram language models for each evaluation set:
4-gram for WSJ, 3-gram “tgsmall” for Librispeech, big 4-
gram for Tedlium3, and a pruned 3-gram for AMI. Acoustic
weights are tuned with these language models to achieve op-
timal performance on the corresponding development sets.
We also make our code open-source.2

1https://github.com/k2-fsa/k2
2https://github.com/ZhaoZeyu1995/Waterfall



3.5. Results and Analysis

3.5.1. Overall Performance

Table 2 presents the performance (Word Error Rate, WER%)
across different evaluation sets and topologies. On WSJ
eval92 (the WSJ column in table 2), S3-T2⋆⋆ leads the
pack. While absolute WER values are closely matched, the
WERR of S3-T2⋆⋆ relative to the baseline S1-T1 (CTC)
stands at 11.1%. On Librispeech test-other (the LS column
in table 2), S2-T1⋆ and S3-T2⋆⋆ take the lead, with S1-
T1 trailing closely, likely due to the acoustic resemblance
between Librispeech and WSJ.

Table 2: Performance (WER%) on various evaluation sets
with different topologies. The last column is the weighted
(concerning the total length of each dataset) average WER
Reduction (WERR%) compared to the baseline, S1-T1 (CTC)
topology.

WSJ LS TED3 AMI WERR%
S1-T1 (CTC) 2.7 8.1 8.9 35.2 -
S2-T1 2.9 8.8 8.1 31.6 3.5
S2-T1⋆ 2.6 8.0 8.3 33.4 4.1
S2-T2⋆ 2.9 8.6 8.2 30.6 5.5
S2-T2 2.8 8.3 8.3 30.2 7.2
S3-T2 2.9 8.9 8.1 31.5 3.3
S3-T2⋆ 2.7 9.0 8.4 32.3 1.5
S3-T2⋆⋆ 2.4 8.0 8.3 32.2 6.1

On Tedlium3, S1-T1 (CTC) notably underperforms against
other topologies. This limitation becomes stark on AMI,
where S2-T2 achieves a WERR of 14.2% over S1-T1. The
root of this disparity lies in S1-T1’s approach of using a
single state to represent each phoneme. This assumes con-
sistent acoustic properties throughout the phoneme, which
does not hold usually. Consequently, the model tends to
identify only the most distinct phoneme segments, relegating
most frames to blank labels. This phenomenon, known as the
“peaky” issue in CTC [27,28], diminishes acoustic modelling
capabilities and can lead to overfitting to the training set’s
specific acoustic conditions. On Tedlium3, S2-T1 and S3-T2
outshine other topologies, despite not leading on WSJ and
Librispeech. This underscores the distinct acoustic nature of
Tedlium3 compared to the former two datasets. Similarly, on
AMI, S2-T2 emerges as the best, even though it does not top
the charts on the other three datasets. Consequently, no single
“supreme” topology excels consistently across all datasets.
Yet, when evaluating the weighted (by the length of each eval-
uation set) average WERR against the baseline S1-T1 (CTC)
topology, S2-T2 stands out, achieving an average WERR of
7.2% over CTC. We find that all the examined topologies
generalise better than CTC, which implies that CTC could be
the easiest option but normally not the best.

We have to admit that we have not come up with a per-
fect theory to explain why a specific topology can achieve the
best adaptability on a dataset or to predict which topology

Table 3: Performance (WER%) of the models trained on
train1, evaluated on test0 and test1 with or without 3-gram
LMs trained on train0 (LM0) or train1 (LM1)

Topology
test1 test0

noLM +LM1 noLM +LM0
S1-T1 (CTC) 15.8 13.2 14.4 12.2
S2-T1 15.0 12.7 14.1 12.1
S2-T1⋆ 14.8 12.6 13.8 12.0
S2-T2⋆ 15.6 13.0 14.2 12.1
S2-T2 15.0 12.7 13.9 12.0
S3-T2 15.2 12.8 14.0 12.1
S3-T2⋆ 15.4 12.9 13.8 12.0
S3-T2⋆⋆ 14.9 12.7 14.2 12.1

will achieve optimal performance given a specific condition.
However, we note that by changing the topology, just like
changing neural network hyper-parameters or other training
settings, we have another dimension to control ASR models.

3.5.2. Effect of Internal Language Models

As outlined in section 1, adaptability in an E2E ASR model
is influenced by two factors: AM generalisability and ILM
mismatch. Here, we would like to verify that topology mainly
affects adaptability by influencing AM generalisability. As
detailed in section 3.3, we derived two Tedlium3 subsets
with distinct language patterns but nearly identical acoustic
features. If a topology drives the model to learn a strong
ILM from one subset, it may struggle to adapt to the other.
Therefore, a topology’s underperformance in the results is
indicative of its inclination to learn a strong ILM. Due to
space constraints, we display the performance of models
trained on train1 in table 3; results with train0 are similarly
aligned. With or without the corresponding external LM,
models trained on train1 excel on test0 over test1. The ILM’s
impact seems minimal across all the examined topologies.
Thus, we see no signs of a dominant ILM in any topology,
indicating AM generalisability as the primary adaptability
factor in DWFST-based E2E ASR. Note that our findings
are based on phoneme modelling units, and outcomes might
differ with other units.

4. CONCLUSION

This study explored the role of topology in DWFST-based
E2E ASR adaptability. We found that the topology of ASR
models influences the adaptability. Evaluations across mul-
tiple ASR corpora highlighted that topology affects adapt-
ability by influencing acoustic modelling power, as no domi-
nant internal language model was found. Besides, the popular
CTC topology struggled with significant acoustic deviations
from its training data. While our findings are anchored on
phonemes as the primary modelling units, future work can
explore diverse units to enhance these insights.
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