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Abstract—This paper proposes a new neural network unit for
sequential input, called Jujubecake Unit or Jujubecake Cell. In
the chain structure formed by this unit, not only the correlation
among individual inputs but also the correlation among blocks
consist of several inputs is considered so that that performance
can be improved. In this paper, Jujubecake model and the multi-
layer LSTM model are evaluated in two experiments: language
modelling and audio event detection. The experimental results
show that Jujubecake Unit proposed in this paper outperforms
the traditional LSTM.

Keywords—Long Short Term Memory, sequence modelling,
language model, audio event detection

I. INTRODUCTION

Life is full of sequence signals, such as the speech, the audio
in the environment, and the sequence of words. In order to deal
with sequence signals in deep learning, different methods have
been proposed from different perspectives. In recent years,
with the popularity of deep neural networks (DNN), the use of
DNN, especially recurrent neural networks (RNN) to process
sequence signals has yielded a lot of good results [1]–[3]. A
simplest RNN has a structure as shown in Fig. 1. However, the
problem of vanishing gradients [4], [5] or exploding gradients
may occur, and as the number of iterations increases, the new
unit would get less information from past ones. In order to
solve this problem, Long Shot-Term Memory (LSTM) [6] has
been proposed and been applied in various fields.

The idea of forming an RNN is intuitive. Each element
of a sequence sequentially inputs into the unit of RNN,
which mainly considers the correlation among input elements.
However, this approach does not reflect a more advanced
correlation. Namely, if the input sequence has some local
features, we can treat adjacent elements of input sequence as
one single block, so that information flows not only among
the input elements but also among these small blocks consist
of adjacent input elements.

For example, in the task of audio event detection [7], [8],
we can apply an LSTM-RNN to predict a label for each input
frame indicating whether a specific audio event happened in
this frame of audio. However, this can be sometimes much
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Fig. 1. A simplest RNN unit

unstable as we will see below in our experiments. The reason
is that the information contained in a single frame is not
sufficient to predict a label because of its short length. Thus,
if we consider the adjacent frames at the same time, we
may expect a more robust prediction. We believe that the
information contained in these adjacent frames is much more
efficient to give us a reliable output than only one single frame.

Another instance is language modelling. In the problem
of language modelling, a typical application is to predict the
next word given an input sequence of words. A conventional
method is also using LSTM-RNN or multi-layer LSTM-RNN,
which takes each word from the input sequence as inputs
and gives out a prediction of the next word. Similarly, in
this process, the correlation between each word in the input
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sequence is considered explicitly. If we can, however, treat
several adjacent words as a phrase and concern the correlation
among phrases explicitly as well, we may expect a better
performance.

In this paper, we call several adjacent elements of the
input sequence a block. The primary motivation of this work,
Jujubecake Cell, is to consider the correlation among blocks
from the input sequence explicitly. To implement the above,
we add some new components based on LSTM so that local
features contained in blocks can be transferred and shared
when processing the input sequence.

II. RELATED WORK

Since its introduction in 1997, LSTM has been widely used
in different fields, including the establishment of language
models [2], the establishment of acoustic models [1], and
speech recognition [3]. The idea of improving LSTM from a
basic one is not novel. There are indeed improvements to basic
LSTM that have proposed the concept of Nested LSTM [9].
Although both of them have got some good results on different
tasks, they still have some shortcomings. As for [9], their direct
purpose is to increase the complexity of the structure, and the
authors expect to model the problem better. However, we think
this approach lacks a clear physical explanation.

We propose a new RNN cell based on LSTM. In the
proposed RNN cell, there is an intuitive physical explanation
and an apparent nested structure.

III. JUJUBECAKE STRUCTURE

In this section, we will first review the basic LSTM cell
structure and then introduce our novel Jujubecake Cell and
give some analysis in depth.

A. Basic LSTM cell structure

A basic LSTM [10] structure can be demonstrated as Fig. 2.
In this figure, the blue part indicates the input to the cell,
purple part represents the output, the yellow part represents the
neural network layer, the pink part represents the element-wise
operation, and the orange part represents the matrix operation
(concatenation). More specifically, it can be expressed in
accordance with eqs. (1) to (6) [11], where σ(·) represents
the sigmoid function, and ◦ represents element-wise multiply.

f t = σ (xtW xf + ht−1W hf + bf ) (1)

ot = σ (xtW xo + ht−1W ho + bo) (2)

it = σ (xtW xi + ht−1W hi + bi) (3)

c̃t = tanh (xtW xc + ht−1W hc + bc) (4)

ct = ct−1 ◦ f t + c̃t ◦ it (5)

ht = ot ◦ tanh (ct) (6)

X(t)

h(t)

Concat

Sigm Sigm Sigmtanh

X

X

+

tanh

h(t-1)

c(t-1)

h(t)

c(t)

X

Fig. 2. A basic LSTMCell structure

B. Jujubecake Cell structure

Our novel structure is an extension of LSTM, as shown
in Fig. 3, which consists of an external LSTM and several
internal LSTMs, similar to the structure of a Chinese snack,
Jujubecake, so we call it Jujubecake Cell. Note that the
number of the internal LSTMs is configurable, and we can
still use eqs. (1) to (6) to describe it with only several small
modifications.

Now we will introduce the workflow of this Jujubecake
Cell. For convenience, let us take a Jujubecake Cell with three
internal LSTMs, as shown in Fig. 3 as an example. First, the
inputs xT1, xT2, xT3 (denoted by Input1, Input2, Input3 in
Fig. 3) are input to three internal LSTMs respectively and
the outputs of them are concatenated together as the input of
the external LSTM XT . Then, the output and hidden state
of the previous Jujubecake Cell HT−1, CT−1 (H(T − 1),
C(T−1) in Fig. 3) are input to the external LSTM to calculate
the forgetting threshold F T , input threshold IT and output
threshold OT according to eqs. (7) to (9). After that, we
calculate the hidden states of internal LSTMs cT1, cT2, cT3

respectively using the output (h(T − 1) in Fig. 3) and the
hidden state (c(T − 1) in Fig. 3) from the last internal LSTM
of the last Jujubecake Cell and concatenate them to form the
current input state of the external LSTM C̃T according to
eq. (10). Then, we combine the current input state C̃T with the
previous state CT−1 considering the input threshold IT and
the forgetting threshold F T according to eq. (11) so that the
current state CT (C(T ) in Fig. 3) can be calculated. Finally,
according to eq. (12), the output of current Jujubecake Cell
HT (H(T ) in Fig. 3) can be calculated given output threshold
OT and current state CT .

F T = σ (XTWXF +HT−1WHF +BF ) (7)

OT = σ (XTWXO +HT−1WHO +BO) (8)

IT = σ (XTWXI + hT−1WHI +BI) (9)
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Fig. 3. Jujubecake Cell structure (3 internal LSTMs in this example)

Fig. 4. Outputs of Jujubecake (left) and LSTM (right) for the same audio file

C̃T = [cT1, cT2, cT3] (10)

CT = CT−1 ◦ F T + C̃T ◦ IT (11)

HT = OT ◦ tanh (CT ) (12)

C. Analysis of Jujubecake Cell

In our structure, we keep the original basic formula un-
changed, and the only thing that needs to be changed is eq. (4).
Specifically, we formulate Jujubecake Cell with eqs. (7)
to (12). In eq. (10), cT1, cT2 and cT3 denote the states
of each internal LSTM respectively, which implies that the

external LSTM has access to all the information of the internal
LSTMs. Another noticeable change in our Jujubecake Cell
is that the output is directly determined by the state of the
external LSTM, but not states of internal LSTMs. We should
also note that involving this new structure does not break the
chain of the internal LSTMs. In addition to the internal LSTM
chain structure, we also have a new form of information flow.
That is the external LSTM chain, which can transfer local
features contained in blocks.

The number of internal LSTMs in one external LSTM is
configurable and can be set manually indicating the range of
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local features we need to concern. We can imagine that if we
set the number of internal LSTMs just equal to the number of
elements of the input sequence, the output of Jujubecake Cell
will only contain the overall features of the input.

IV. EXPERIMENT

In this section, we will use experiments to evaluate the
performance of the Jujubecake Cell, compared with multi-
layer LSTM and other models in other papers. To illustrate
the performance of Jujubecake Cell, we set the number of
each model parameters equally.

One of the experiments is about word-level language mod-
elling. In this paper, we use Penn Treebank [12] dataset. The
other experiment is the detection of the glass-break event in
DCASE2017 Task2. The dataset can be downloaded from the
official website of DCASE2017. We have placed all the code
needed for the experiments on Github1.

All experiments in this paper are based on TensorFlow deep
learning framework [13].

A. Language modeling

Penn Treebank has about 929k training words, 73k valida-
tion words, and 82k test words. The vocabulary is around 10k.
We use Jujubecake Cell and 2-layer LSTM model to build the
language model separately. The structure of the two models
and the number of model parameters are shown in the Table I
and Table II respectively.

TABLE I
MODEL STRUCTURE OF JUJUBECAKE MODEL

Layer (type) Output Shape Param

JujubeCake Cell 768 16259584
Dense 9999 15368463

Total params 36,747,535
Trainable params 36,747,535
Non-trainable params 0

TABLE II
MODEL STRUCTURE OF LSTM MODEL

Layer (type) Output Shape Param

BasicLSTM Cell 1024 8392704
BasicLSTM Cell 1024 8392704
Dense 9999 10248975

Total params 37,273,359
Trainable params 37,273,359
Non-trainable params 0

The training batch size is 32. Both models are trained no
less than 50 epochs before convergence. The final model is
evaluated on the validation set and the test set, and the results
are shown in Table III. We also present some results from other
models [10]. The metric here is perplexity, which is defined
as eq. (13), where ptargeti denotes the probability output by

1https://github.com/ZhaoZeyu1995/JujubeCakeCell

the model for the target word in the ith sample and N denotes
the total number of samples.

perplexity = exp

(
− 1

N

N∑
i=1

ln ptargeti

)
(13)

TABLE III
MODEL PERFORMANCE ON TRAINING SET, VALIDATION SET AND TEST SET

Model Training Validation Test

Jujubecake with dropout 111.4 198.8 177.2
2-layer LSTM model 242.2 338.0 298.7
non-regularized LSTM 120.7 114.5
Medium regularized LSTM 86.2 82.7
Large regularized LSTM 82.2 78.4

We note that Jujubecake model has a better performance
than the 2-layer LSTM model. As for a reason, as mentioned
in section III-C, Jujubecake Cell not only considers the rela-
tionship among words but among phrases as well.

Indeed, our Jujubecake Cell does not achieve state-of-the-art
results in [10]. However, this is just a novel RNN cell, and it
is at the very beginning that we have to do many optimisations
about it in the future.

B. Audio event detection

In this experiment, there are about 3000 samples in the
training set. Each sample is a piece of audio with a duration
of 30 seconds. Within this 30 seconds, the glass-break event
will occur randomly for a short period or not. We extract
20-dimensional MFCCs (Mel-frequency cepstral coefficients)
features for each frame of audio. In the original annotation, the
start and end time of the glass-break event is marked, and this
annotation can be used to mark each frame whether the glass-
break event occurs or not in this frame (if the event occurred,
we denote it as 1, otherwise 0). Besides, the focal loss was
used in our experiments [14].

We evaluate Jujubecake model on this task and compare it
with some of the results in DCASE2017 Task2. The official
metrics are applied, and their specific definitions are derived
from [?]. The lower the error rate (ER) or, the higher the F
score means, the better the overall performance achieve.

The structure and the number of the model parameter for
Jujubecake model are shown in Table IV.

We set a batch size of 10 to train our model. After the train-
ing of 20 epochs, we got the converged model. We evaluate
the model on the official evaluation set, which contains about
500 samples. The evaluation results are shown in Table V.
Besides, we also list some other results to compare with our
Jujubecake model.

To illustrate the problem in a more intuitive method, Fig. 4
shows the different results output by two models for the same
piece of input audio. We can see that Jujubecake model (left
in Fig. 4) is much stabler. This is because it considers the
correlation among not only frames but also blocks that consist
of multiple adjacent frames. Compared with 2-layer LSTM
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TABLE IV
MODEL STRUCTURE AND THE NUMBER OF MODEL PARAMETERS

Layer Output Shape Param

JujubeCake Cell 768 2193664
Reshape 16× 16× 3 0
Conv2D 16× 16× 32 2432
MaxPooling2D 8× 8× 32 0
Conv2D 8× 8× 64 51264
MaxPooling 4× 4× 64 0
Reshape 4× 4× 64 0
Dense 256 262400
Dense 2 514

Total params 2,510,274
Trainable params 2,510,274
Non-trainable params 0

TABLE V
THE RESULT OF GLASSBREAK EVENT DETECTION

Model ER F

Jujubecake model 0.26 86.9%
Lim COCAI task2 1 [15] 0.0480 97.6%
Wang THU task2 1 [8] 0.3560 81.0%
Ghaffarzadegan BOSCH task2 3 [16] 0.2320 87.9%

model (right in Fig. 4), our Jujubecake model is less likely to
output a false positive like the rightmost in Fig. 4.

V. CONCLUSION

We propose a new RNN cell, Jujubecake Cell, which has
a better performance than LSTM. Jujubecake Cell, first of
all, is an extension of LSTM, with the original LSTM chain
structure well preserved, so we can say that there is precisely
no loss of the original information flow. Besides, due to the
addition of the external LSTM in Jujubcake Cell, not only the
association between individual inputs but also the association
between blocks that consist of multiple inputs is considered.
This improves the model stability. Thus, as demonstrated in
the experiments, Jujubecake Cell has better performance than
LSTM.

We have to admit that Jujubecake model does not get
the best performance as for the experiment results. However,
Jujubecake is a novel RNN cell, and it is currently at the very
beginning that we have to do many optimisations about it in
the future.
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