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ABSTRACT

End-to-end Automatic Speech Recognition (E2E ASR) sig-
nificantly simplifies the training process of an ASR model.
Connectionist Temporal Classification (CTC) is one of the
most popular methods for E2E ASR training. Implicitly, CTC
has a unique topology which is very useful for sequence mod-
elling. However, we find that by changing to another topol-
ogy, we can make it even more effective. In this paper, we
propose a new CTC-like method, for E2E ASR training, by
modifying the topology of original CTC, so that the well-
known abuse of the blank label in CTC can be resolved the-
oretically. As we change the topology, a normalisation term
is necessary, which makes the form of the final loss function
similar to Maximum Mutual Information (MMI); we hence
name our method MMI-CTC. In addition to maximising the
posterior probability of the target sequence, the normalisation
enables models to explicitly minimise the probability of com-
peting hypothesis at the word sequence level. Our experimen-
tal results show that MMI-CTC is more efficient than CTC,
and that the normalisation is essential for sequence training.

Index Terms— ASR, E2E ASR, CTC, MMI, Sequence
Training

1. INTRODUCTION

An Automatic Speech Recognition (ASR) system transcribes
input speech into corresponding word sequences. Conven-
tional ASR systems are based on Hidden Markov Model
(HMM) [1, 2, 3]. To develop a conventional ASR model,
we need to train several components separately, including an
acoustic model, a language model, etc. Several loss functions
were applied to train conventional ASR models [2, 3, 4, 5].
After obtaining all components, a decoding algorithm is ap-
plied to get the final best hypothesis.

To simplify the training procedure of ASR models, in the
recent decade, many researchers focused on end-to-end (E2E)
ASR modelling [6, 7, 8]. Instead of training several compo-
nents separately, thanks to deep neural networks (DNN), E2E
modelling makes it possible to develop an ASR model by sim-
ply training one DNN based on a loss function or a specific
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neural network structure [6, 4, 8, 7], where one only needs to
pay attention to the inputs and the outputs of DNNs.

Inspired by both conventional and E2E loss functions, in
this paper, we propose a new loss function, MMI-CTC, for
E2E ASR training. We will see that MMI-CTC has a better
than CTC and a faster convergence speed.

In the rest of this paper, we will first go through some re-
lated work in section 2. Then we will introduce the proposed
loss function in depth in section 3. After that, we will show
and analyse the experiment results in section 4. Finally, we
conclude in section 5.

2. RELATED WORK

2.1. Connectionist Temporal Classification

The main problem for sequence training is that there is usually
no alignment between input and target sequences available.
In CTC [6], a blank label was introduced to deal with the ab-
sence of alignment. Given an input sequence X = X1:T and
an target sequence Y = Y1:L, CTC [6] marginalises align-
ments by

p(Y |X) =
∑

π∈B−1(Y )

p(π|X) =
∑

π∈B−1(Y )

T∏
t′=1

pt′(πt′ |X),

(1)
where B(∗) is the mapping that maps an alignment sequence
to a target sequence by merging consecutive identical la-
bels and removing blank labels. One essential assump-
tion in CTC is conditional independence, i.e., p(π|X) =∏T
t′=1 pt′(πt′ |X).

2.2. Maximum Mutual Information

Originally, in conventional ASR training, where there are sep-
arate acoustic and language models, the maximum likelihood
(ML) loss function

LML = − log p(X|Y ), (2)

was applied to train acoustic models [2, 1]. In addition to
maximising the likelihood p(X|Y ) for the corresponding
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transcriptions, Maximum Mutual Information,

LMMI = − log
p(X|Y )p(Y )∑
Y ′ p(X|Y ′)p(Y ′)

, (3)

where p(X|Y ) and p(Y ) are modelled by the acoustic and
the language model respectively, minimises the summation
of the probabilities of other word sequences Y ′ at the same
time, which has been proved to be more effective [5]. In order
to make use of GPUs and to avoid lattice generation, Lattice
Free MMI (LF-MMI) was also introduced, achieving state-
of-the-art performance [9, 10].

2.3. Discussion

One of the well known issues with CTC is the so-called
“peaky” issue, whereby particular labels tend to dominate the
posterior probability at each time frame. This can be sub-
optimal [11]. Regarding the reasons for the peaky issue, we
believe that, when we use only one label to model a specific
phoneme, grapheme or sentence piece [12], we strongly as-
sume that the acoustics should keep the same over its whole
process. However, this does not hold all the time. For in-
stance, a diphthong in English has two sub-vowel sounds, so
the acoustics of the beginning and the ending parts cannot
be the same but we force our classifiers to classify them as
the same class. As a result, only a small number of frames
of acoustic features can be recognised as the corresponding
label in CTC with the rest of them labelled as blank labels.
On the other hand, in CTC [6], a blank label can actually
represent several different things: firstly, a blank label can
represent the silent parts of utterances; secondly, a blank la-
bel is compulsory between a pair of repeated labels, which
is an imposed demand but it literally needs to absorb at least
several frames of input features; and last, because of peaky
issue [11], a blank token can also represent some parts of
non-blank tokens. It is obviously incorrect or undesired that
the blank label has so many roles. Thus, we would like to
change the topology that allows us to use two output labels
to model one output token and the above abuse of the blank
label can be avoided. However, after changing the topology,
we observe that of course, not all the alignments are valid.
As a result, we need a normalisation procedure, which makes
the final loss function similar to MMI. There have been some
other work of modifying CTC [13, 14, 15] but we have not
work looking at the aspect of topology.

3. METHOD

3.1. Tokens and Topology

As we have discussed in section 2.3, the shared blank label
and the topology in CTC have some disadvantages. Thus, we
propose individual blank tokens for different character tokens
in our alphabet to let them inherit the third functions of the

blank label in section 2.3. Besides, we also introduce a space
token 〈space〉 to represent silent parts of utterances to deal
with the first point in section 2.3. In summary, we denote A
as the set of all character tokens, B as the set of all blank
tokens, and 〈space〉 as the space token, where |A| = |B|,
meaning each character token a ∈ A has an individual blank
token εa ∈ B, and there is no blank token for 〈space〉. For
the following discussion, let C = A ∪ B ∪ 〈space〉} denote
the whole token set.

The topology of CTC and the proposed loss function is
shown in fig. 1. By removing the self-loop on character token,
a blank token is not mandatory between repeated tokens any
more in our loss function, which tackles the second point in
section 2.3.

	𝑎 	𝜖

Conditional

(a)

	𝑎 	𝜖!

(b)

Fig. 1. Different topology of CTC (a) and the proposed one
(b), where ε represents the shared blank label in CTC, and
εa denotes individual blank token for token a in the proposed
loss topology.

3.2. Objective

Define the input speech features as X = X1:T , the target to-
ken sequence as Y = Y1:L, where Xt ∈ RD is the input
feature vector at time step t, and Yl ∈ A is the l-th token
in character token set A. Similar to CTC [6], because there
is no alignment information between input speech and tran-
scriptions, the posterior probability p(Y |X) can be expressed
as

p(Y |X) =
∑

π∈B−1(Y )

p(π|X) =
∑

π∈B−1(Y )

T∏
t=1

pt(πt|X),

(4)
where B : π → Y is the mapping from an alignment se-
quence π to the target sequence Y by simply removing all
space tokens and blank tokens, and π = π1:T is an align-
ment sequence with the length of T and πt ∈ A′, and, fi-
nally, pt(πt|X) is the posterior probability for token πt at
time step t. Besides, there is also a conditional indepen-
dence assumption in our case as in CTC [6], i.e, p(π|X) =

p(π1, π2, . . . , πT |X) =
∏T
t=1 p(πt|X).

As we know that the summation of the probabilities of all
alignment sequences equals to one. However, there are many
invalid alignments, as we introduce individual blank tokens
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and a character token can not be followed by other blank to-
kens expect the corresponding one. Thus, regarding the def-
inition in eq. (4), the summation over all possible target se-
quences is smaller than one. One may be curious about the
whether this does not happen in CTC. In fact, due to the CTC
topology, an arbitrary alignment sequence can be mapped to
a target sequence, so there is no invalid alignment sequence
in CTC at all.

To normalise eq. (4), we need to introduce a denominator,

p(Y |X) =

∑
π∈B−1(Y )

∏T
t=1 pt(πt|X)∑

Y ′
∑
π∈B−1(Y ′)

∏T
t=1 pt(πt|X)

, (5)

where the summation over Y ′ is calculated over all possible
target sequences. Finally, the objective loss function is

LMMI−CTC = − log p(Y |X) = logD − logN, (6)

where D and N denote the denominator and the numerator
respectively in eq. (5). As the structure of this loss function is
similar with that of MMI, we name it MMI-CTC.

Besides, the main difference from LF-MMI [9, 10] is that
there is no phoneme language model needed in MMI-CTC.

3.3. Forward-Backward Variables

The difficulty of computing the numerator and the denomi-
nator parts of eq. (6) is the summation over all corresponding
alignments. Similar to CTC [6], where the authors proposed a
forward-backward algorithm [16], for the numerator and the
denominator, we define two pairs of forward and backward
variables α(N)

t , β
(N)
t and α(D)

t , β
(D)
t , which can be written as

α
(N)
t (s) =

∑
π∈B−1(Y )
πt=ls

pαt (π), α
(D)
t (k) =

∑
π∈Π
πt=ck

pαt (π) (7)

β
(N)
t (s) =

∑
π∈B−1(Y )
πt=ls

pβt (π), β
(D)
t (k) =

∑
π∈Π
πt=ck

pβt (π) (8)

where pαt (π) =
∏t
t′=1 pt′(πt′ |X) is the forward prob-

ability of an alignment π at time step t and pβt (π) =∏T
t′=t pt′(πt′ |X) is the backward probability. In eqs. (7)

and (8), for the numerator, s denotes the s-th token ls in the
auxiliary sequence Y ′ = {ls}Ss=1. For instance, considering
a target sequence Y = {I am}, its auxiliary sequence is
Y ′ = {〈space〉, i, εi, 〈space〉, a, εa,m, εm, 〈space〉}, where
the beginning and the ending space tokens and all blank to-
kens are optional. For the denominator, k denotes the k-th
token ck in the complete token set C, and Π denotes all valid
alignment sequences. The computation of all these variables,
including initialisation, recursion and ending, is similar to
CTC and due to space limitations we do not introduce it in
detail.

3.4. Gradient

To train a neural network model, we need to calculate the
gradients of the loss function with respect to the output of
the neural network. For simplicity reason, we first define two
variables,

γ
(N)
t (s) =

∑
π∈B−1(Y )
πt=ls

p(π|X), γ
(D)
t (k) =

∑
π∈Π
πt=ck

p(π|X) (9)

for the numerator and the denominator respectively. Obvi-
ously, substitute eqs. (7) and (8) into eq. (9) and we have,

γ
(N)
t (s) =

α
(N)
t (s)β

(N)
t (s)

pt(ls|X)
, γ

(D)
t (k) =

α
(D)
t (s)β

(D)
t (s)

pt(ck|X)
.

(10)
Besides, according to eqs. (5) and (9), we have

Nt =
∑
s

γ
(N)
t (s), Dt =

∑
k

γ
(D)
t (k), (11)

where Nt and Dt are the numerator and the denominator of
eq. (5) at time step t, respectively and they are certainly iden-
tical over all the time steps from 1 to T . Thus, we just denote
them as N and D in the following, respectively. The deriva-
tive of loss function L with respect to the output of the neural
network log pt(ck|X)

∂L
∂ log pt(ck|X)

=
1

D

∂D

∂ log pt(ck|X)
− 1

N

∂N

∂ log pt(ck|X)
.

(12)
Substitute eq. (11) and consider eq. (10) and the chain rule,
and we have,

∂L
∂ log pt(ck|X)

=
γ

(D)
t (k)∑
k γ

(D)
t (k)

−
∑
s

γ
(N)
t (s)∑

s′ γ
(N)
t (s′)

∂pt(ls|X)

∂pt(ck|X)
,

(13)
where ∂pt(ls|X)

∂pt(ck|X) = 1 when ls = ck, else 0.

3.5. Implementation

To calculate the forward and the backward variables α(N)
t (s),

β
(N)
t (s), α(D)

t (k) and β(D)
t (k) efficiently, we generate tran-

sition matrix A and transform matrix B according to the aux-
iliary sequence Y ′, where A = [aij ]S×S and aij = 1 if li
can be arrived from lj otherwise aij = 0 [16]. The transform
matrix B = BS×K , whose row vectors are one-hot, trans-
forms p(ck|X) to p(ls|X) by matrix multiplication. Finally,
the recursion process for the numerator forward and backward
variables can be simply denoted by

α
(N)
t+1 = Aα

(N)
t ◦Bpt, β(N)

t = ATβ
(N)
t+1 ◦B(N)pt (14)

where α(D)
t , β(D)

t and pt are column vectors at time step t
and ◦ denotes the element-wise multiplication. As for the
denominator, we generate the transition matrix according to
the topology and the transform matrix here is just an identical
matrix. The recursion process is similar to eq. (14).
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4. EXPERIMENTS

4.1. Settings

We evaluate our models trained with CTC, and MMI-CTC
on WSJ dataset. We apply ESPnet [17] and Kaldi [18] for
feature extraction and PyTorch [19] for model training and
evaluation. We extract 80-dim fbank features and 3-dim pitch
features, in total 83-dim input features, as the input of neu-
ral networks. The model is 4-layer bi-directional LSTM [20]
with one projection layer between each pair of LSTMs, which
is named as RNNP in ESPnet. The number of the units in
LSTM for one direction is 512 and that of the projection lay-
ers is 512 as well. There is also a dropout rate of 0.2 between
each pair of LSTMs. We train our models with Adam opti-
miser and a learning rate scheduler that reduces the learning
rate automatically when there is no loss reduction on devel-
opment set. We stop training when there is no loss reduction
on development set, which is regarded as convergence. When
decoding, we apply a beam search decoding algorithm as in
[21] with a beam size of 50. The decoding algorithms of CTC
and MMI-CTC are similar. However, one essential difference
from CTC is that we only allow the paths compatible with
MMI-CTC topology. Besides, we also decode with an 3-gram
language model in ARPA format from WSJ dataset, where the
language model coefficient during decoding is 0.5, which is
tuned on development set.

4.2. Results and Analysis

The results with and without language model are shown in ta-
bles 1 and 2, where MMI-CTC-oN denotes the model trained
by MMI-CTC but without normalisation. To evaluate the ef-
fect of normalisation in eq. (5), for MMI-CTC-oN, we man-
ually assign the first item of eq. (12) to zero, but we still use
eq. (6) to calculate the loss to make them comparable.

Table 1. The performance of models w/o language model.

WER% CTC MMI-CTC MMI-CTC-oN ESPnet

dev93 29.9 27.3 37.0 30.5

eval92 24.0 22.8 29.8 24.3

Table 2. The performance of models with language model.

WER% CTC MMI-CTC MMI-CTC-oN

dev93 17.4 16.4 20.7

eval92 13.3 12.7 14.6

In order to verify our implementation, we also train a
model with the same neural network structure and hyperpa-
rameters based on pure CTC by ESPnet. We can see that in

both two cases, with and without the language model, MMI-
CTC is consistently better than CTC.

We also notice that normalisation is significantly impor-
tant for MMI-CTC to achieve a better performance. In ad-
dition to the overall performance, we also find that the con-
vergence speed of MMI-CTC is faster than CTC as shown in
fig. 2, as it stops earlier than CTC. One may say the numbers
of the tokens in MMI-CTC and CTC are different, and this
could be a reason for the different convergence speed. Thus,
we also show the curve for MMI-CTC-oN. As we know the
only difference between MMI-CTC-oN and MMI-CTC is that
there is no denominator minimisation in the former one, we
can prove that the faster convergence speed arises from the
denominator minimisation. Note that the loss in fig. 2 has
a physical meaning of the average − log p(Y |X) and at last
LMMI−CTC is smaller than LCTC on the development set,
which implies the former has a better generalisation ability.

0 10000 20000 30000 40000 50000 60000
Training steps

50

100

150

200

250

Lo
ss

Training Process
CTC
MMI-CTC
MMI-CTC-oN

Fig. 2. The training loss on development set.

5. CONCLUSION

To deal with the undesired aspects of CTC, we propose to
change the topology the introduce individual blank tokens.
The new topology drives us to introduce a denominator for
normalisation, which is the main difference between CTC
and MMI-CTC in terms of equations. As we can see from
the experiment results, MMI-CTC has a better performance
and converges faster than CTC. This is because the normalisa-
tion enables the model to directly minimise the probability of
other possible word sequences. In future work, we are plan-
ning to apply MMI-CTC in more powerful DNN architecture
and expecting to achieve state-of-the-art performance.

7795

Authorized licensed use limited to: University of Edinburgh. Downloaded on May 17,2022 at 01:24:22 UTC from IEEE Xplore.  Restrictions apply. 



6. REFERENCES

[1] Mark Gales and Steve Young, “The application of hid-
den Markov Models in speech recognition,” Founda-
tions and Trends in Signal Processing, vol. 1, no. 3, pp.
195–304, 2007.

[2] L. R. Rabiner and B. H. Juang, “An Introduction to
Hidden Markov Models,” IEEE ASSP Magazine, vol. 3,
no. 1, pp. 4–16, 1986.

[3] L.R. Rabiner, “A tutorial on hidden markov models and
selected applications in speech recognition,” Proceed-
ings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[4] Geoffrey Hinton, Li Deng, et al., “Deep neural networks
for acoustic modeling in speech recognition: The shared
views of four research groups,” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 82–97, 2012.
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