
Neural Networks 139 (2021) 326–334

B
U

l
o
k
i
k
l
s
l
t
G
e
a
b
A
L
2
T

w

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2021 Special Issue

End-to-end keyword search system based on attentionmechanism
and energy scorer for low resource languages
Zeyu Zhao, Wei-Qiang Zhang ∗

eijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua
niversity, Beijing 100084, China

a r t i c l e i n f o

Article history:
Available online 10 April 2021

Keywords:
Keyword search
End-to-end
Low resource language
Deep neural network

a b s t r a c t

Keyword search (KWS) means searching for keywords given by the user from continuous speech.
Conventional KWS systems are based on Automatic Speech Recognition (ASR), where the input speech
has to be first processed by the ASR system before keyword searching. In the recent decade, as deep
learning and deep neural networks (DNN) become increasingly popular, KWS systems can also be
trained in an end-to-end (E2E) manner. The main advantage of E2E KWS is that there is no need for
speech recognition, which makes the training and searching procedure much more straightforward
than the traditional ones. This article proposes an E2E KWS model, which consists of four parts:
speech encoder–decoder, query encoder–decoder, attention mechanism, and energy scorer. Firstly, the
proposed model outperforms the baseline model. Secondly, we find that under various supervision,
character or phoneme sequences, speech or query encoders can extract the corresponding information,
resulting in different performances. Moreover, we introduce an attention mechanism and invent a
novel energy scorer, where the former can help locate keywords. The latter can make final decisions
by considering speech embeddings, query embeddings, and attention weights in parallel. We evaluate
our model on low resource conditions with about 10-hour training data for four different languages.
The experiment results prove that the proposed model can work well on low resource conditions.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Keyword search (KWS) or keyword spotting is to detect and
ocate keywords entered by the user in continuous speech and
utput confidence scores to indicate the probabilities that the
eywords occur in input speech. The entered keywords can be
n text form or spoken form. In this article, we only discuss
eywords in the text form. Any character sequence in the target
anguage can be input as a query. Conventional ASR-based KWS
ystems (Trmal et al., 2017) usually decode speech into word
attices or other forms of decoding results by ASR systems. After
hat, a backend KWS system (Hartmann, Le, Messaoudi, Lamel, &
auvain, 2014) is applied to find the keywords of interest. How-
ver, as DNNs become increasingly popular, KWS systems can
lso be developed in an end-to-end fashion (Audhkhasi, Rosen-
erg, Sethy, Ramabhadran, & Kingsbury, 2017a, 2017b; Kamper,
nastassiou, & Livescu, 2019; Kim, Lee, Lee, Kim, & Hwang, 2019;
engerich & Hannun, 2016; Sacchi, Nanchen, Jaggi, & Cernak,
019; Settle, Levin, Kamper, & Livescu, 2017; Sharma et al., 2020;
anaka & Shinozaki, 2018, 2019). The advantage of the E2E KWS

∗ Corresponding author.
E-mail addresses: zzy17@mails.tsinghua.edu.cn (Z. Zhao),

qzhang@tsinghua.edu.cn (W.-Q. Zhang).
ttps://doi.org/10.1016/j.neunet.2021.04.002
893-6080/© 2021 Elsevier Ltd. All rights reserved.
system is that we need neither the ASR system nor the cor-
responding decoding steps anymore (Audhkhasi et al., 2017a,
2017b). Besides, to process out-of-vocabulary (OOV) queries, tra-
ditional ASR-based KWS systems usually require large sub-word
lattices (Mamou, Ramabhadran, & Siohan, 2007), confusion net-
works (Mangu, Kingsbury, Soltau, Kuo, & Picheny, 2014) or other
technologies such as proxy words (Chen, Yilmaz, Trmal, Povey,
& Khudanpur, 2013). However, the E2E system of a full neural
network can avoid the above situation. Finally, it is sometimes
difficult to train an ASR system when resources are insufficient.
Still, intuitively, it is much easier to train E2E KWS systems with
the same amount of data as KWS is a low-level task compared
with ASR somehow.

A primary method of E2E ASR-free KWS is using encoders to
extract embeddings or features from input speech and queries
and perform KWS with them (Audhkhasi et al., 2017a, 2017b;
Sacchi et al., 2019), which is also the baseline model in this
article and will be briefly introduced in Section 2. In Audhkhasi
et al. (2017a, 2017b), the authors used an auto-encoder to restore
the original input speech features from the speech embeddings
extracted by the encoder part. If the restoring effect is perfect,
almost no information is lost during the input speech features’
compression to the speech embeddings. However, we believe

https://doi.org/10.1016/j.neunet.2021.04.002
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.04.002&domain=pdf
mailto:zzy17@mails.tsinghua.edu.cn
mailto:wqzhang@tsinghua.edu.cn
https://doi.org/10.1016/j.neunet.2021.04.002


Z. Zhao and W.-Q. Zhang Neural Networks 139 (2021) 326–334

t
b
c
o
t
c
e
e
S
l
t
i
s
t
t
L
g
u
d
p
a
c
2
w
w
a
w
A
e
d
p
t
2
a
k
a
m

K
q
h
a
p
a

hat the most crucial and essential information that speech em-
eddings should contain is the character or phoneme sequence
orresponding to input speech, which is what subsequent KWS
perations only need, but not the whole input speech features. To
his end, we attempt to convert the speech embeddings into the
orresponding character or phoneme sequence to lead the speech
ncoder to extract the necessary information into the speech
mbeddings. The authors of Audhkhasi et al. (2017a, 2017b) and
acchi et al. (2019) converted the input speech into a fixed-
ength vector, where the time dimension was lost, but we believe
he time domain is vital for the speech signal. From the exper-
ment section of this article, we find that converting the input
peech into a variable-length matrix is better, maintaining the
ime dimension. As for the processing of input queries, we find
hat the sequence-to-sequence (Seq2Seq) (Sutskever, Vinyals, &
e, 2014) model is better than the CNN-RNN character LM (lan-
uage model) in Audhkhasi et al. (2017a, 2017b). Besides, by
sing different kinds of labels, we may obtain query embed-
ings containing various types of information, i.e., spelling or
ronunciation. Fortunately, there has been some method readily
vailable for us to apply to our practices. Connectionist temporal
lassification (CTC) (Graves, Fernández, Gomez, & Schmidhuber,
006) makes it possible to train an ASR system in an E2E fashion
ithout alignment (Graves, Mohamed, & Hinton, 2013). Thus,
e apply CTC as one of the speech decoders to predict char-
cter or phoneme sequences. Seq2Seq (Sutskever et al., 2014)
as initially proposed in the area of neural machine translation.
ccording to our experiments, we find that it is much more
fficient than CNN-RNN character LM in the baseline system (Au-
hkhasi et al., 2017a, 2017b). To deal with the difficulty when
rocessing long sequences, some researchers proposed atten-
ion mechanisms (Chorowski, Bahdanau, Serdyuk, Cho, & Bengio,
015; Luong, Pham, & Manning, 2015) as a supplement. In this
rticle, we also use the attention-based Seq2Seq model as another
ind of speech decoder. Besides, inspired by the attention mech-
nism (Chorowski et al., 2015; Luong et al., 2015) in sequence
odeling, we introduce an attention mechanism for E2E KWS.
The final phase of Audhkhasi et al. (2017a, 2017b) is called the

WS system, a multilayer perceptron (MLP) that takes speech and
uery embeddings as input and outputs probabilities indicating
ow likely the keywords occur in the input speech. We find that
more sophisticated structure can replace it to obtain better
erformance. Specifically, we introduce an attention mechanism
nd a novel component called the energy scorer to accomplish this

goal.
The main contributions of our work are that

1. We improve recovery accuracy by applying a more suitable
network structure for query encoder–decoder;

2. By transforming speech and query embeddings into char-
acter or phoneme sequences, the encoders may extract
spelling or pronunciation information from input speech
and query respectively;

3. We apply two kinds of speech encode-decoder and com-
pare the performances, and

4. We propose an attention mechanism and a novel energy
scorer, which are much more sophisticated components
than MLP.

In the following, in Section 2 we will first briefly introduce the
baseline model and analyze its shortage, from which we propose
our improved methods. After that, the proposed method will be
described in depth in Section 3. Next, the experiment results and
analysis will be given in Section 4. Finally, we will conclude this

article in Section 5.

327
2. Baseline model

In this section, we will briefly introduce the baseline sys-
tem (Audhkhasi et al., 2017a, 2017b). It consists of three compo-
nents, including RNN acoustic auto-encoder, CNN-RNN character
LM and KWS system.

To deal with input speech, they applied the encoder part of
the RNN acoustic auto-encoder that takes speech features as
input and compresses them into a fix-length vector, called speech
embeddings. After that, the speech embeddings will be passed
through the decoder part to obtain a prediction. They intended
to make the prediction close to the original speech features as
much as possible to maximize the information compressed in the
speech embeddings. Like speech processing, the input query will
also be compressed into a fix-length vector called query embed-
dings, extracted by the encoder part of the CNN-RNN character
LM. They then attempted to recover the original input query from
the query embeddings by the decoder part. If this works well, one
can say that there is little information lost during compression.
Finally, given speech and query embeddings, the KWS system,
an MLP, takes the concatenation of them as input and gives out
the final confidence score between zero and one, indicating the
probability that the keyword occurs in the input speech.

We make some improvements in this article. First, we believe
that the time domain is crucial for speech signal, so we try to
keep it in the speech embeddings, resulting in speech embed-
dings of matrices. Besides, trying to recover the original input
speech features may lead the encoder part to extract embeddings
without much information loss. However, we argue that some
information is redundant. What is only crucial is the character
or phoneme sequences corresponding to the input speech, con-
sidering the downstream KWS. Thus, we try to transform the
speech embeddings into the character or phoneme sequences by
the speech decoder to lead the encoder to extract spelling or
pronunciation information from input speech. As for the query
encoder–decoder, we find that Seq2Seq model (Sutskever et al.,
2014) is much more efficient CNN-RNN Character LM in the
baseline system (Audhkhasi et al., 2017a, 2017b).

3. Method

In this section, we will first introduce the overall architecture
of our model. We will then discuss each component, includ-
ing speech encoder–decoder, query encoder–decoder, attention
mechanism, and energy scorer, further in detail.

3.1. Overall structure

The overall structure of our proposed model is shown in
Fig. 1. First, we calculate speech and query embeddings by speech
and query encoders, respectively. Then, we pass them through
the attention mechanism to obtain a set of attention weights,
which will be used by the last component, the energy scorer. Fi-
nally, the energy scorer outputs a confidence scorer given speech
embeddings, query embeddings, and attention weights.

3.2. Speech encoder–decoder

In the baseline system (Audhkhasi et al., 2017a, 2017b), the
authors transformed input speech into a fixed-length vector,
where the temporal dimension was eliminated. On the contrary,
we argue that temporal information is essential for speech sig-
nals, which is inspired by the development of neural machine
translation (NMT). Initially, a successful NMT model, Seq2Seq

model (Neubig, 2017; Sutskever et al., 2014), was proposed,



Z. Zhao and W.-Q. Zhang Neural Networks 139 (2021) 326–334

{

Fig. 1. The overall structure of our E2E KWS system.

Fig. 2. The process of speech embeddings extraction and using CTC technique
or attention-based decoder (CTC/Attention) to predict the character or phoneme
sequences from the speech embeddings.

where the input sequence was firstly compressed into a fixed-
length vector, from which the output sequence was generated.
However, this method may not work well especially dealing with
long input sequences (Neubig, 2017) and that is why some re-
searchers proposed the attention-based Seq2Seq method (Bahar,
Brix, & Ney, 2018; Libovickỳ & Helcl, 2017; Neubig, 2017). In
the above attention-based method, the input speech is usually
transformed into high-level representations. We borrow that
idea in our work and call that high-level representations speech
embeddings instead.

The process of our speech encoder–decoder can be illustrated
as Fig. 2. We first pass input speech features through 1-D CNNs
followed by a 1-D max pooling with a stride of 2, resulting
in half time-steps compared with the origin, because we want
to make it quicker to train a recurrent neural network (RNN)
later in the downstream. Then, we use gated recurrent units
(GRU) (Chorowski et al., 2015) to extract the speech embeddings,
which is a variable-length matrix but not a fixed-length vector.
We have obtained speech embeddings, and they will be used in
the following KWS process. However, to make these embeddings
more explainable, we apply a CTC technique (Graves et al., 2006),
or an Attention-based Seq2Seq (Luong et al., 2015) method to
lead the speech encoder to extract the pertinent information
from input speech. Note that when doing KWS, we only need to
compute the speech embeddings given the input speech features
but completely ignore CTC/Attention-GRU-Decoder in Fig. 2.

To describe the above process, denote input speech features
as

X∗
= {x∗

1, x
∗

2, . . . , x
∗

T } (1)

and after the process of 1-D CNNs and 1-D max pooling, we
obtain X = {x1, x2, . . . , xT/2}. The speech embeddings Es =

e1, e2, . . . , eT/2} are computed by GRU-Encoder, which is a mul-
tilayer uni-directional GRU-RNN followed by a fully connected
328
Fig. 3. The process of query embeddings extraction.

layer with ReLU activation function, as

Es = Encoder(X). (2)

Note that after ReLU activation function, et > 0, 1 ≤ t ≤ T/2.
After obtaining Es, Attention-GRU-Decoder with Global Atten-

tion (Luong et al., 2015), at each decoding time step t , calculates
the attention weight for each es in Es, according to

αt (s) = align(ht , es)

=
exp (score(ht , es))∑
s′ exp (score(ht , es′ ))

, (3)

where αt (s) denotes the attention weight for the sth speech
embedding at the tth decoding time step, ht is the hidden state
of the Attention-GRU-Decoder at time t and score(a, b) is the dot
product of vector a and b.

Then, at each decoding time step t , a context vector ct , which
is the weighted sum of the speech embeddings, can be computed
by

ct =

∑
s

αt (s)es. (4)

Finally, the prediction for the tth time step ot is obtained by
concatenating the context vector ct and the hidden state ht and
passing them through a fully connected layer (FCL) with softmax
activation over all possible characters or phonemes in the target
language. This can be expressed by

ot = FCL([hT
t , c

T
t ]

T). (5)

Besides, given the speech embeddings, we may also apply the
CTC technique to output the corresponding character or phoneme
sequence. We only need to add an FCL with softmax activation
and calculate the CTC loss (Graves et al., 2006) from it.

Note that the processing of extracting speech embeddings
is constant, even though we use two different types of speech
decoders, i.e., CTC or Attention-based Seq2Seq. Thus, we will
compare and analyze them in the following experiment section.

3.3. Query encoder–decoder

Like the speech encoder–decoder, to extract query embed-
dings from input query, a sequence of characters, and make the
embeddings much more explainable, query encoder–decoder is
applied in our system. The structure of query encoder–decoder
is shown in Fig. 3, which is a Seq2Seq method (Sutskever et al.,
2014).

We first transform the input query into query embeddings by
query encoder and attempt to predict the original input character
sequence or the corresponding phoneme sequence by query de-
coder. The query embeddings contain spelling or pronunciation
information if the decoder can predict the character or phoneme
sequence well from it. Specifically, the encoder and the decoder
are both multilayer GRU-RNN with the same hyper-parameters to
take the hidden state of the last time step in the encoder as query
embeddings, which can be used as initial states by the decoder.
Same with speech decoder, query decoder will not be taken into
account when performing KWS.



Z. Zhao and W.-Q. Zhang Neural Networks 139 (2021) 326–334

d
f
r
P

e

a

y

w
e
c
t
t

3

d
w
m
m
W
n
e
a
(
p
a
e

s
f

E

t

b
i
w
b
k

t
s
k
i

s
a

c

w

w

w

e

Fig. 4. The structure of the attention mechanism. The speech and query embed-
ings are first concatenated together (we should repeat the query embeddings
irst before concatenation, which is not shown in this figure for simplicity
eason). Bi-LSTM and MLP denote bi-directional LSTM RNN and Multilayer
erceptron, respectively.

The overall process of the above can be denoted by

q = Encoder(Embedding(xq)) (6)

nd

q = Decoder(eq), (7)

here eq is the query embeddings (or query feature vector)
xtracted by query encoder, xq is the input query (a sequence of
haracters) and yq is the predicted sequence of characters. We can
hen minimize the cross-entropy loss between yq and xq to lead
he encoder to extract robust embeddings from input queries.

.4. Attention mechanism for KWS

The speech embeddings, which is a matrix, save the temporal
imension, and we want to know which part contains the key-
ords to search for them. That is why we introduce the attention
echanism for KWS. In recent works, the concept of attention
echanism is increasingly popular. For example, in Shan, Zhang,
ang, and Xie (2018), the authors proposed an attention mecha-
ism for keyword searching, but that only takes as input the audio
mbeddings. In contrast, in our version, it takes as input audio
nd query embeddings simultaneously. Besides, in Zhang et al.
2019), an attention mechanism for speaker verification was pro-
osed. However, that takes two sequences of audio embeddings
s input, but in our method, the attention takes a series of audio
mbeddings and a query embedding vector as input.
The structure of the attention mechanism is shown in Fig. 4.
Firstly, to concatenate the speech and query embeddings, we

hould repeat the latter to make it the same length of time as the
ormer, as shown in (8)
∗

q = {eq, eq, . . . , eq}, (8)

where eq is the query embeddings (or query feature vector)
extracted by query encoder, and there are T/2 eq vectors in E∗

q .
After that, we concatenate Es and E∗

q along the feature dimen-
sion, i.e., Esq = {[eT1, e

T
q]

T, [eT2, e
T
q]

T , . . . , [eTT/2, e
T
q]

T
}, where Esq is

the result of the concatenation. Then, we pass Esq through a bi-
directional LSTM-RNN (Hochreiter & Schmidhuber, 1997) so that
we can obtain E∗

sq = BLSTM(Esq). Finally, the last layer is an FCL
with a sigmoid activation and one single neural unit, which is
shown as

α = FCL(E∗

sq) = {FCL(e∗

1), FCL(e
∗

2), . . . , FCL(e
∗

T/2)}, (9)

where α = a1, a2, . . . , aT/2 is the attention weights vector, and
e∗

i , 1 ≤ i ≤ T/2 are the vectors in E∗
sq.

In summary, given speech and repeated query embeddings, Es
and eq, the overall function of the attention mechanism can be
described as

α = Attend(Es, eq), (10)

where α = {a1, a2, . . . , aT/2} and at ∈ (0, 1) denotes the atten-
ion weight for tth time step and E , e are speech and query
s q r

329
Fig. 5. The structure of the energy scorer. Firstly, we calculate the weighted sum
of speech embeddings concerning the attention weights to obtain Context. Then
we compute the energy ratio of the Context and the speech embeddings. Finally,
we make the final decision by comparing the energy ratio and the threshold
computed by passing the query embeddings through an MLP.

embeddings respectively. The value of at indicates how likely the
attention mechanism believes that a keyword occurs at time step
t . As we will demonstrate in the experiment section, the atten-
tion mechanism can roughly locate the keywords’ time region.
However, after obtaining the attention weights, we cannot make
a final decision, yet the time lengths of the keywords remain
unknown to us. In other words, the question is how we can get
the KWS results with the speech embeddings, the query embed-
dings, and the attention weights without knowing the length of
the keywords. This will be tackled by the novel energy scorer,
which can consider the above three items in parallel.

3.5. Energy scorer

Till now, we have got the speech embeddings Es, the query em-
eddings Eq, and the attention weights α. The attention weights
ndicate how likely the keywords occur in each time step, but, as
e said in the last section, we still cannot make the final decision
ecause we have no prior knowledge about the duration of the
eywords.
Here we introduce a novel component called energy scorer

hat combines the above three terms to output a confidence
core ranging from zero to one, indicating the probability that the
eywords occur in the input speech. The structure of it is shown
n Fig. 5.

We first compute the context vector, which is the weighted
um of speech embeddings Es = {e1, e2, . . . , eT/2} according to
ttention weights α = {a1, a2, . . . , aT/2}, by

=

∑
t

atet , (11)

here at ∈ (0, 1) and c denotes the context vector.
We define the energy of the context vector as

Energyc := cTc

=

(∑
t

atet

)T (∑
t

atet

)
=

∑
t

a2t e
T
t et +

∑
t1 ̸=t2

at1at2e
T
t1et2

(12)

here at ∈ (0, 1), t, t1, t2 = 1, 2, . . . , T/2.
Obviously, Energyc has an upper bound

Energyc ⩽
∑
t

eTt et +

∑
t1 ̸=t2

eTt1et2

= sum(ET
s Es)

=: Energys

(13)

here sum(A) means the summation of elements in matrix A.
The energy ratio r between the context vector and the speech

mbeddings,
= Energyc/Energys. (14)



Z. Zhao and W.-Q. Zhang Neural Networks 139 (2021) 326–334

r
e

a
t
i
i
m
f

a
t
w
n
t
s
t
q

r

a
r

g
o
b
f

L

epresents the energy proportion of the context vector in speech
mbeddings.
The larger the energy ratio is, the more big weights from the

ttention mechanism and the more likely the keyword occurs in
he input speech. We apply the concept of energy here to make
t more robust against noise. As we know, the energy of noise
s usually smaller than that of real speech. Thus, if the attention
echanism outputs some big weights for time steps that are

ull of noise, Energyc may not be large enough, compared with
Energys, to result in a false alarm decision.

Finally, the last thing is to pass the query embeddings through
n MLP and get a threshold rth ranging from zero to one so
hat we can compare it with the energy ratio r , which implies
e generate a specific threshold for each query. The reason be-
eath this is that the query embeddings can be almost precisely
ransformed to the original input character sequences or corre-
ponding phoneme sequences by the query encoder, meaning
hat nearly all the useful information is compressed into the
uery embeddings.
Therefore, we make the final decision by

≶N
Y rth. (15)

nd the confidence score is (r − rth + 1)/2 resulting in a value
anging from zero to one.

We calculate the binary cross-entropy loss between r and the
round truth target (0 or 1) to train our energy score. Simultane-
usly, we train the attention mechanism in the last section by
inary cross-entropy according to the ground truth target. The
inal loss function is written as

= CrossEntropy(r, yt ) + βCrossEntropy(α, ya), (16)

where yt and ya are ground truth of the final decision and the at-
tention boundary respectively, and β is a hyperparameter which
can be adjusted manually. We set β = 1 to treat attention
weights and final decisions equally in our following experiments.

4. Experiment and analysis

In this section, we will introduce the experiment and give the
results mainly on the Assamese dataset. Finally, we will evalu-
ate the proposed model on all the four low resource language
datasets mentioned in this article, including Assamese, Bengali,
Pashto, and Turkish. We will demonstrate the performance of the
proposed model. For comparison, we also evaluate the baseline
system (Audhkhasi et al., 2017a, 2017b) on the above language
datasets. Specifically, the speech encoder–decoder’s performance
will be first given, followed by the query encoder–decoder part.
Then, we will illustrate the attention mechanism’s behavior by
visualizing the attention weights for both positive and negative
samples. Finally, we will compare the KWS performance of all
models and analyze the results.

4.1. Data preparation

We use IARPA Babel-102, Babel-103, Babel-104, and Babel-
105 datasets, which are Assamese, Bengali, Pashto, and Turkish,
respectively, to train and evaluate the models. To demonstrate
the performance on low resource condition, we only use the
LimitedLP, which contains about 10 hour training data for each
evaluation language. We cut the input speech into one-second
pieces for simplicity and locating precision and label each piece
of speech by corresponding character or phoneme sequences
according to original annotation and lexicon from the datasets.
We may treat this as a sliding window, and when evaluating, the
test speech can be input to the model second-by-second with
a proper search window stride so that the keywords may be
330
detected and located as the speech continues. Given input speech
pieces and the corresponding character or phoneme sequences,
we can train our speech encoder–decoder.

As to query encoder–decoder, we take the sequences of char-
acters as input using themselves or the corresponding phoneme
sequences as labels for training.

As we mentioned above, each piece of speech pairs a character
sequence and a phoneme sequence, so every word or phrase can
be taken as a positive query for this piece of speech. To generate
negative queries, we randomly choose words and phrases that do
not occur in that piece of speech, where we should also consider
the distribution of all words and phrases in the training corpus.
In other words, the more frequently a word or phrase occurs as a
positive query, the more regularly it does as a negative query. As
for the training of attention mechanism, for each query in a piece
of speech, we take the alignment from Kaldi (Povey, Ghoshal,
Boulianne, et al., 2011) and generate label sequences (0 and 1
for negative and positive cases, respectively) for each time step
of speech embeddings.

4.2. Experiment settings

We apply TensorFlow (Abadi, Agarwal, Barham, et al., 2015),
and Keras (Chollet et al., 2015) deep learning framework to im-
plement our proposed and the baseline model.

We frame the input speech with a frame length and shift
of 0.025 and 0.010 s, respectively. Then we extract 40 Mel-
filter-bank (fbank) features together with their first- and second-
order differences to obtain 120-dim features for each frame of
input speech finally. The speech encoder we use in this experi-
ment consists of two 1D CNNs with 128 and 256 filters, one 1D
max-pooling layer, and two uni-directional GRUs with 256 units.
As for speech decoder, there are two types mentioned above,
CTC (Graves et al., 2006) and Attention-based Seq2Seq (Luong
et al., 2015). The former has a single FCL with softmax activation,
whose output will be used to calculate CTC loss. The latter has
a two-layer GRU with the same hyper-parameters with speech
encoder so that we can take the last hidden states of encoder
GRU as the initial states for decoder GRU. Also, the latter has
an FCL with softmax activation on the top of GRUs, and we take
cross-entropy as the loss function.

Both the proposed and the baseline model compress the input
query into a fixed-length vector. We set the number 256 in
our experiment. To be more specific, both the encoder and the
decoder consist of two GRUs with 128 units, respectively. Besides,
the dimension of the embedding layer in the query encoder is
128. On the top of decoder GRUs, there is an FCL with softmax
activation, and we use cross-entropy as the loss function.

At last, for the attention mechanism, the number of units
of bi-LSTM is 128 per direction. We also use an FCL with one
neural unit and a sigmoid activation function to generate thresh-
olds from query embeddings. Given the above settings, the sizes
of models are about 12 MegaBytes and 13 MegaBytes for the
proposed and baseline model, respectively.

Note that the hyper-parameters in the baseline model have
approximately the same number of trainable parameters as the
proposed model. We train the three parts of the models sep-
arately, i.e., speech encoder–decoder, query encoder–decoder,
and attention mechanism together with energy scorer (KWS
system for baseline model). We train our model by Adam opti-
mizer (Kingma & Ba, 2015) with a learning rate of 0.001 on a Tesla
P100 GRU with 8 GB memory. For each language, the evaluation
set contains about 10 hour speech with annotation. The keywords
can be divided into two classes, in-vocabulary (IV) and out-of-
vocabulary (OOV). Thus, all KWS performance will be given in IV
and OOV, respectively.



Z. Zhao and W.-Q. Zhang Neural Networks 139 (2021) 326–334

T
T
A

t
d
n
e

4

w
a
m

r
o
(
i
p
s
t
A

C
o

p
o
r
f
b
m
r

d
t
t
b
s

s
a
T
w
d
T
i

b

able 1
he KWS performance of ACC and AUC with different speech decoders for
ssamese IV and OOV.

CTC Attention Seq2Seq Baseline

ACC IV 0.7061 0.7343 0.6135
OOV 0.7049 0.7072 0.6042

AUC IV 0.7737 0.7787 0.6384
OOV 0.7715 0.7577 0.6320

Table 2
The performance of ACC and AUC with pre-trained and un-pre-trained speech
encoder–decoders for Assamese IV and OOV.

Pre-trained Un-pre-trained Baseline

ACC IV 0.7343 0.6380 0.6135
OOV 0.7072 0.6318 0.6042

AUC IV 0.7787 0.6945 0.6384
OOV 0.7577 0.6930 0.6320

Three steps finish the overall training process. Firstly, we
rain the speech encoder–decoder. After that, the query encoder–
ecoder will be trained. Finally, we train the attention mecha-
ism and the energy scorer together with the speech and query
ncoder fixed.

.3. KWS performance

The metric that the baseline system used is accuracy (ACC),
hich is a function of threshold. To marginalize the threshold, we
lso use the Area Under Curve (AUC) (Bradley, 1997) as another
etric to evaluate the models.
Note that we test in-vocabulary (IV) and OOV queries sepa-

ately. For Assamese, Bengali, Pashto, and Turkish, the number
f evaluation IV and OOV queries are (5285, 2088), (4957, 2368),
3228, 975), and (1937, 1234), respectively. Firstly, we analyze the
nfluence of the choice of speech decoder. We compare the KWS
erformance with CTC speech decoder and Attention Seq2Seq
peech decoder, shown in Table 1, where ‘‘CTC’’ and ‘‘Atten-
ion Seq2Seq’’ denote the model with CTC speech decoder and
ttention-based Seq2Seq speech decoder, respectively.
From Table 1, we can see that the KWS performances with

TC or Attention Seq2Seq are approximately equal, and they both
utperform the baseline system.
Then, we illustrate the KWS performance with or without the

re-trained Attention Seq2Seq speech encoder–decoder. With-
ut training the speech encoder–decoder, we only initialize it
andomly and fix them when training other parts. The final per-
ormances on the Assamese language dataset are shown in Ta-
le 2, where ‘‘Pre-trained’’ and ‘‘Un-pre-trained’’ represent the
odel with and without pre-trained speech encoder–decoder,

espectively.
From Table 2, we find that the training of speech encoder–

ecoder is very important for the proposed model as it leads
o extract the spelling information. However, after removing
he pre-trained speech encoder–decoder, it still outperforms the
aseline system; this is mainly because of the other components
till serving well.
As mentioned above, there are two kinds of information,

pelling and pronunciation, that we can extract from input speech
nd queries, according to which type of labels we use for training.
hus, there are four combinations, i.e., C–C, C–P, P–C, and P–P,
here P–C denotes that we train speech and query encoder–
ecoder with phoneme and character sequences, respectively.
he performance of these four systems and the baseline system
s shown in Table 3.

According to Table 3, we find that ‘‘C-C’’ and ‘‘P-P’’ are slightly
etter than ‘‘C-P’’ and ‘‘P-C’’, which is because, in the former two
331
Table 3
The performance of ACC and AUC with different combinations of speech and
query encoder–decoders for Assamese IV and OOV.

C-C C-P P-C P-P Baseline

ACC IV 0.7343 0.7195 0.6995 0.7385 0.6135
OOV 0.7072 0.6909 0.6876 0.7068 0.6042

AUC IV 0.7787 0.7619 0.7651 0.7712 0.6384
OOV 0.7577 0.7400 0.7467 0.7529 0.6320

Table 4
The KWS performance of ACC with CTC and Attention Seq2Seq speech
encoder–decoders for other three language datasets.

CTC Attention Seq2Seq Baseline SGMM

Bengali IV 0.7436 0.7450 0.5892 0.6334
OOV 0.7217 0.7338 0.5787 0.5059

Pashto IV 0.7615 0.7704 0.6112 0.6277
OOV 0.7403 0.7377 0.6095 0.5034

Turkish IV 0.7677 0.7422 0.6156 0.6429
OOV 0.7153 0.7066 0.6025 0.5104

Table 5
The KWS performance of AUC with CTC and Attention Seq2Seq speech
encoder–decoders for other three language datasets.

CTC Attention Seq2Seq Baseline

Bengali IV 0.7907 0.7873 0.6633
OOV 0.7815 0.7789 0.6578

Pashto IV 0.8230 0.8426 0.6554
OOV 0.8025 0.8204 0.6527

Turkish IV 0.8501 0.8648 0.6846
OOV 0.8243 0.8340 0.6745

models, the speech and query encoders extract the embeddings
containing the same kind of information. However, it is not the
case for the latter two models. Again, the performances of all four
models are better than the baseline system.

At last, we evaluate our models on three other language
datasets, including Bengali, Pashto, and Turkish. The results are
shown in Tables 4 and 5, where we follow the Kaldi recipe (Povey
et al., 2011) to train SGMM model for comparison with conven-
tion ASR-based method. However, as for the ASR-based method,
we only calculate the accuracy metrics (AUC) as how the authors
did in the baseline model article (Audhkhasi et al., 2017a, 2017b).

We find that the performances are approximately the same
as on the Assamese language dataset. Notably, we also notice
that the ASR-based method does not work well in low resource
conditions (less than 10 h for training). Besides, note that all
the proposed models outperform the baseline model significantly.
According to results on various language datasets, the proposed
model can be applied for not only Assamese but also Bengali,
Pashto, and Turkish as well.

4.4. Speech encoder–decoder

We have mentioned two types of speech encoder–decoders
that share the same part of the encoder, and the only difference
is the decoder part in . First, for the Attention-based Seq2Seq
decoder, we apply accuracy as the metrics. The performance of it
trained with character and phoneme labels respectively is shown
in Table 6.

Besides, for the CTC-based decoder, the loss curves on train-
ing and evaluation set for all testing languages are shown in
Fig. 6. Note that we only use character sequences as labels when
training CTC-based speech encoder–decoder.



Z. Zhao and W.-Q. Zhang Neural Networks 139 (2021) 326–334

T
T
w

b
f
c
t

4

p
T
d
p
l
f
m

u
o
t

Fig. 6. CTC loss during the training process, where ‘‘loss’’ and ‘‘eval_loss’’ denote CTC loss on training and evaluation set respectively.
able 6
he prediction accuracy of speech encoder and Attention-based Seq2Seq decoder
ith character or phoneme sequence labels.

Character Phoneme

Assamese 0.7458 0.7355
Bengali 0.7345 0.7598
Pashto 0.6757 0.7446
Turkish 0.7645 0.7881

Table 7
The prediction accuracy of characters and phonemes for the proposed and the
baseline (character only) model on the validation set.

Character Phoneme Character-Baseline

Assamese 0.9918 0.9241 0.8347
Bengali 0.9916 0.9631 0.8110
Pashto 0.9967 0.9616 0.8599
Turkish 0.9910 0.9115 0.7430

From Table 6 and Fig. 6, we can see that the speech em-
eddings, as we expect, contain spelling or pronunciation in-
ormation to some degree because the decoder can predict the
orresponding character or phoneme sequences well just from
hese speech embeddings.

.5. Query encoder–decoder

The performances of query encoder–decoders for both the
roposed and baseline model on the validation set are shown in
able 7. The validation set is randomly sampled from the whole
ataset with a ratio of 10% and not used during the training
rocess. Note that we use character or phoneme sequences as
abels leading the encoder to extract spelling or pronunciation in-
ormation, but only character sequences are used for the baseline
odel.
Comparing the ‘‘Character’’ and the ‘‘Character-Baseline’’ col-

mn in Table 7, we can see that the query encoder–decoder based
n Seq2Seq is more efficient than CNN-RNN Character LM in
he baseline model, where they both compress the input queries
332
Table 8
The KWS performance of ACC and AUC for Assamese IV and OOV.

CTC CTC-MLP Baseline

ACC IV 0.7061 0.6240 0.6135
OOV 0.7049 0.6128 0.6042

AUC IV 0.7737 0.7438 0.6384
OOV 0.7715 0.7326 0.6320

into 256-dim query embeddings. From Table 7, we also note
that the speech embeddings contain spelling or pronunciation
information according to which kind of labels we use.

4.6. Attention mechanism

As we mentioned in Section 3.4, the attention mechanism
helps locate the keywords’ time region from speech embeddings.
The stereotype of attention weights for negative and positive
samples are illustrated in Fig. 7. From Fig. 7, we see that the
attention weights keep almost zero when processing negative
samples while approximately depict the time region of positive
queries. As a result, the attention mechanism makes it much
easier for the energy scorer to make final decisions.

4.7. Ablation

In this section, we do some ablation experiments, mainly on
the energy scorer part. First of all, we show the KWS results
after removing the energy scorer and using an MLP instead. In
this case, the MLP takes as input the context vector, which is
calculated according to (11), which is a vector. This MLP contains
only two layers, and the number of units for each layer is 256
and 1, respectively. The output of the MLP will be subtracted by
a threshold computed from the query embeddings to get the final
decision. If the subtraction result is positive, the system reckons
that the keyword occurs in the input speech segment and vice
versa.

We only conduct the experiments on the Assamese language
dataset. The results are shown in Table 8, where we refer to the



Z. Zhao and W.-Q. Zhang Neural Networks 139 (2021) 326–334

T
T

e
t
h
s
t
t
w
e
w
i
c
t
N
h
e

5

s
m
e
e
t
p
u
t
s
o

e
b
i
f

Fig. 7. The attention weights for negative (left) and positive (right) sample.
able 9
he KWS performance of ACC and AUC for Assamese IV and OOV.

CTC CTC-noTH Baseline

ACC IV 0.7061 0.6028 0.6135
OOV 0.7049 0.6011 0.6042

AUC IV 0.7737 0.6374 0.6384
OOV 0.7715 0.6225 0.6320

products from Table 1 as a comparison, CTC-MLP denotes the
system after the removal of energy scorer. All the settings are
kept the same with CTC in Table 1 except the change of energy
scorer. We can see that the performance without the energy
scorer degrades to some degree but is still slightly better than
the baseline model in terms of both of ACC and AUC metrics. We
think this is mainly because the energy ratio in (14) is essential
for the KWS performance.

Besides, we argue that the threshold generated from the query
mbeddings is crucial for the KWS performance. We remove
he threshold and compare the energy ratio in (14) with the
ard threshold of 0.5 to make the final decision. The results are
hown in Table 9 with the similar settings with Table 8, where
he CTC-noTH denotes the same settings with CTC except the
hreshold generated from the query embeddings. From Table 9,
e notice that without the threshold generated by the query
mbeddings, the performance of the proposed model can even be
orse than the baseline model. Regarding the reason, we analyze

t as follows. The lengths of the keywords may vary, and the
orresponding speech may also in different lengths. The length of
he corresponding speech obviously influences the energy ratio.
otably, in general, the longer the corresponding speech is, the
igher the energy ratio is. Thus, it is essential to have a different
nergy ratio threshold for each and every keyword.

. Conclusion

We propose an E2E KWS model that consists of four parts,
peech encoder–decoder, query encoder–decoder, attention
echanism, and energy scorer. The former two components
xtract embeddings from the input speech and query by their
ncoder parts under their decoder parts’ supervision. As a result,
he speech and query embeddings may contain the spelling or
ronunciation information depending on which kind of labels we
sed when training them. Then the attention mechanism locates
he approximate time region of the keywords. Finally, the energy
corer makes final decisions by considering the above three parts’
utputs in parallel.
We find that the Seq2Seq method is much more efficient to

xtract query embeddings than CNN-RNN Character LM in the
aseline system. Besides, instead of compressing input speech
nto a fixed-length vector, keeping the time dimension is crucial

or the speech signal. It will result in better performance when

333
extracting the same kind of information from input speech and
query. However, even if we use different kinds of embeddings, the
KWS performance is still better than the baseline model because
of the power of the attention mechanism and the energy scorer.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China, China under Grant No. U1836219, and in
part by the National Key R&D Program of China, and the Insti-
tute for Guo Qiang of Tsinghua University, China under Grant
No. 2019GQG0001, and the Cross-Media Intelligent Technology
Project of Beijing National Research Center for Information
Science and Technology (BNRist), China under Grant No.
BNR2019TD01022.

References

Abadi, M., Agarwal, A., Barham, P., et al. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available from tensorflow.org.
URL https://www.tensorflow.org/.

Audhkhasi, K., Rosenberg, A., Sethy, A., Ramabhadran, B., & Kingsbury, B. (2017a).
End-to-end ASR-free keyword search from speech. IEEE Journal of Selected
Topics in Signal Processing, 11(8), 1351–1359. http://dx.doi.org/10.1109/JSTSP.
2017.2759726, arXiv:1701.04313.

Audhkhasi, K., Rosenberg, A., Sethy, A., Ramabhadran, B., & Kingsbury, B.
(2017b). End-to-end ASR-free keyword search from speech. In Proceedings of
international conference on acoustics, speech and signal processing (pp. 4840–
4844). Institute of Electrical and Electronics Engineers Inc., http://dx.doi.org/
10.1109/ICASSP.2017.7953076.

Bahar, P., Brix, C., & Ney, H. (2018). Towards two-dimensional sequence to
sequence model in neural machine translation. arXiv preprint arXiv:1810.
03975.

Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation
of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159. http:
//dx.doi.org/10.1016/S0031-3203(96)00142-2.

Chen, G., Yilmaz, O., Trmal, J., Povey, D., & Khudanpur, S. (2013). Using proxies
for OOV keywords in the keyword search task. In Proceedings of workshop
on automatic speech recognition and understanding (pp. 416–421). http://dx.
doi.org/10.1109/ASRU.2013.6707766.

Chollet, F., et al. (2015). Keras. URL https://keras.io.
Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. (2015). Attention-

based models for speech recognition. In Advances in neural information
processing systems: Vol. 2015-Janua, (pp. 577–585). arXiv:1506.07503.

Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006). Connectionist
temporal classification: Labelling unsegmented sequence data with recurrent
neural networks. In ACM international conference proceeding series: Vol. 148,
(pp. 369–376). http://dx.doi.org/10.1145/1143844.1143891.

Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition with
deep recurrent neural networks. In Proceedings of international conference
on acoustics, speech and signal processing (pp. 6645–6649). http://dx.doi.org/
10.1109/ICASSP.2013.6638947, arXiv:1303.5778.

https://www.tensorflow.org/
http://dx.doi.org/10.1109/JSTSP.2017.2759726
http://dx.doi.org/10.1109/JSTSP.2017.2759726
http://dx.doi.org/10.1109/JSTSP.2017.2759726
http://arxiv.org/abs/1701.04313
http://dx.doi.org/10.1109/ICASSP.2017.7953076
http://dx.doi.org/10.1109/ICASSP.2017.7953076
http://dx.doi.org/10.1109/ICASSP.2017.7953076
http://arxiv.org/abs/1810.03975
http://arxiv.org/abs/1810.03975
http://arxiv.org/abs/1810.03975
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1109/ASRU.2013.6707766
http://dx.doi.org/10.1109/ASRU.2013.6707766
http://dx.doi.org/10.1109/ASRU.2013.6707766
https://keras.io
http://arxiv.org/abs/1506.07503
http://dx.doi.org/10.1145/1143844.1143891
http://dx.doi.org/10.1109/ICASSP.2013.6638947
http://dx.doi.org/10.1109/ICASSP.2013.6638947
http://dx.doi.org/10.1109/ICASSP.2013.6638947
http://arxiv.org/abs/1303.5778


Z. Zhao and W.-Q. Zhang Neural Networks 139 (2021) 326–334

H
artmann, W., Le, V. B., Messaoudi, A., Lamel, L., & Gauvain, J. L. (2014).
Comparing decoding strategies for subword-based keyword spotting in
low-resourced languages. In Proceedings of the annual conference of the
international speech communication association (pp. 2764–2768). URL http:
//www.isca-speech.org/archive/interspeech_2014/i14_2764.html.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8), 1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Kamper, H., Anastassiou, A., & Livescu, K. (2019). Semantic query-by-example
speech search using visual grounding. In ICASSP 2019 - 2019 IEEE international
conference on acoustics, speech and signal processing (pp. 7120–7124). http:
//dx.doi.org/10.1109/ICASSP.2019.8683275.

Kim, B., Lee, M., Lee, J., Kim, Y., & Hwang, K. (2019). Query-by-example on-
device keyword spotting. In 2019 IEEE automatic speech recognition and
understanding workshop (pp. 532–538). http://dx.doi.org/10.1109/ASRU46091.
2019.9004014.

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. In
3rd international conference on learning representations, ICLR 2015 - Conference
track proceedings. International Conference on Learning Representations,
ICLR, arXiv:1412.6980.

Lengerich, C., & Hannun, A. (2016). An end-to-end architecture for keyword
spotting and voice activity detection. arXiv preprint arXiv:1611.09405.

Libovickỳ, J., & Helcl, J. (2017). Attention strategies for multi-source
sequence-to-sequence learning. arXiv preprint arXiv:1704.06567.

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to
attention-based neural machine translation. In Conference Proceedings -
EMNLP 2015: Conference on empirical methods in natural language processing
(pp. 1412–1421). Association for Computational Linguistics (ACL), http://dx.
doi.org/10.18653/v1/d15-1166, arXiv:1508.04025.

Mamou, J., Ramabhadran, B., & Siohan, O. (2007). Vocabulary independent spoken
term detection. In Proceedings of the 30th annual international ACM SIGIR
conference on research and development in information retrieval (pp. 615–622).
http://dx.doi.org/10.1145/1277741.1277847.

Mangu, L., Kingsbury, B., Soltau, H., Kuo, H. K., & Picheny, M. (2014). Efficient spo-
ken term detection using confusion networks. In Proceedings of international
conference on acoustics, speech and signal processing (pp. 7844–7848). Institute
of Electrical and Electronics Engineers Inc., http://dx.doi.org/10.1109/ICASSP.
2014.6855127.

Neubig, G. (2017). Neural machine translation and sequence-to-sequence
models: A tutorial. arXiv preprint arXiv:1703.01619.

Povey, D., Ghoshal, A., Boulianne, G., et al. (2011). The kaldi speech recognition
toolkit. In Proceedings of IEEE 2011 workshop on automatic speech recog-
nition and understanding. IEEE Signal Processing Society, IEEE Catalog No.:
CFP11SRW-USB.
334
Sacchi, N., Nanchen, A., Jaggi, M., & Cernak, M. (2019). Open-vocabulary keyword
spotting with audio and text embeddings. 2019-Septe, In Proceedings of the
annual conference of the international speech communication association (pp.
3362–3366). http://dx.doi.org/10.21437/Interspeech.2019-1846.

Settle, S., Levin, K., Kamper, H., & Livescu, K. (2017). Query-by-example search
with discriminative neural acoustic word embeddings. In Proc. interspeech
2017 (pp. 2874–2878). http://dx.doi.org/10.21437/Interspeech.2017-1592.

Shan, C., Zhang, J., Wang, Y., & Xie, L. (2018). Attention-based end-to-end models
for small-footprint keyword spotting. In Proceedings of the annual conference
of the international speech communication association: Vol. 2018-Septe, (pp.
2037–2041). http://dx.doi.org/10.21437/Interspeech.2018-1777, arXiv:1803.
10916.

Sharma, E., Ye, G., Wei, W., Zhao, R., Tian, Y., Wu, J., et al. (2020). Adaptation
of RNN transducer with text-to-speech technology for keyword spotting. In
ICASSP 2020 - 2020 IEEE international conference on acoustics, speech and
signal processing (pp. 7484–7488). http://dx.doi.org/10.1109/ICASSP40776.
2020.9053191.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning
with neural networks. In Advances in neural information processing systems:
Vol. 4, (pp. 3104–3112). Neural information processing systems foundation,
arXiv:1409.3215.

Tanaka, T., & Shinozaki, T. (2018). F-measure based end-to-end optimization of
neural network keyword detectors. In 2018 Asia-Pacific signal and information
processing association annual summit and conference (pp. 1456–1461). http:
//dx.doi.org/10.23919/APSIPA.2018.8659736.

Tanaka, T., & Shinozaki, T. (2019). Efficient free keyword detection based on
CNN and end-to-end continuous dp-matching. In 2019 IEEE automatic speech
recognition and understanding workshop (pp. 637–644). http://dx.doi.org/10.
1109/ASRU46091.2019.9004021.

Trmal, J., Wiesner, M., Peddinti, V., Zhang, X., Ghahremani, P., Wang, Y.,
et al. (2017). The Kaldi OpenKWS System: Improving low resource key-
word search. In Proceedings of the annual conference of the international
speech communication association: Vol. 2017-Augus, (pp. 3597–3601). http://
dx.doi.org/10.21437/Interspeech.2017-601, URL http://www.isca-speech.org/
archive/Interspeech_2017/abstracts/0601.html.

Zhang, Y., Yu, M., Li, N., Yu, C., Cui, J., & Yu, D. (2019). Seq2seq atten-
tional siamese neural networks for text-dependent speaker verification. In
ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal
processing (pp. 6131–6135). IEEE.

http://www.isca-speech.org/archive/interspeech_2014/i14_2764.html
http://www.isca-speech.org/archive/interspeech_2014/i14_2764.html
http://www.isca-speech.org/archive/interspeech_2014/i14_2764.html
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/ICASSP.2019.8683275
http://dx.doi.org/10.1109/ICASSP.2019.8683275
http://dx.doi.org/10.1109/ICASSP.2019.8683275
http://dx.doi.org/10.1109/ASRU46091.2019.9004014
http://dx.doi.org/10.1109/ASRU46091.2019.9004014
http://dx.doi.org/10.1109/ASRU46091.2019.9004014
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1611.09405
http://arxiv.org/abs/1704.06567
http://dx.doi.org/10.18653/v1/d15-1166
http://dx.doi.org/10.18653/v1/d15-1166
http://dx.doi.org/10.18653/v1/d15-1166
http://arxiv.org/abs/1508.04025
http://dx.doi.org/10.1145/1277741.1277847
http://dx.doi.org/10.1109/ICASSP.2014.6855127
http://dx.doi.org/10.1109/ICASSP.2014.6855127
http://dx.doi.org/10.1109/ICASSP.2014.6855127
http://arxiv.org/abs/1703.01619
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb22
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb22
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb22
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb22
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb22
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb22
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb22
http://dx.doi.org/10.21437/Interspeech.2019-1846
http://dx.doi.org/10.21437/Interspeech.2017-1592
http://dx.doi.org/10.21437/Interspeech.2018-1777
http://arxiv.org/abs/1803.10916
http://arxiv.org/abs/1803.10916
http://arxiv.org/abs/1803.10916
http://dx.doi.org/10.1109/ICASSP40776.2020.9053191
http://dx.doi.org/10.1109/ICASSP40776.2020.9053191
http://dx.doi.org/10.1109/ICASSP40776.2020.9053191
http://arxiv.org/abs/1409.3215
http://dx.doi.org/10.23919/APSIPA.2018.8659736
http://dx.doi.org/10.23919/APSIPA.2018.8659736
http://dx.doi.org/10.23919/APSIPA.2018.8659736
http://dx.doi.org/10.1109/ASRU46091.2019.9004021
http://dx.doi.org/10.1109/ASRU46091.2019.9004021
http://dx.doi.org/10.1109/ASRU46091.2019.9004021
http://dx.doi.org/10.21437/Interspeech.2017-601
http://dx.doi.org/10.21437/Interspeech.2017-601
http://dx.doi.org/10.21437/Interspeech.2017-601
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0601.html
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0601.html
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0601.html
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb31
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb31
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb31
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb31
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb31
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb31
http://refhub.elsevier.com/S0893-6080(21)00129-5/sb31

	End-to-end keyword search system based on attention mechanism and energy scorer for low resource languages
	Introduction
	Baseline model
	Method
	Overall structure
	Speech encoder–decoder
	Query encoder–decoder
	Attention mechanism for KWS
	Energy scorer

	Experiment and analysis
	Data preparation
	Experiment settings
	KWS performance
	Speech encoder–decoder
	Query encoder–decoder
	Attention mechanism
	Ablation

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


